• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimering av lagernivåer vid distributionscentralen Bygg Ole / Optimization of inventory levels at the distribution central of Bygg Ole

Göransson, Gustav, Johnson, Mathias January 2016 (has links)
Detta examensarbetes syfte var att undersöka möjligheter till förbättring av hantering av lagernivåer för Bygg Ole Saltsjö-Boo. En kombination av aspekter från både systemteknik och industriell ekonomi har använts. I rapporten applicerades Guaranteed Service-Level modellen baserad på historisk försäljning i kombination relevanta teorier om lagerkostnad. Rapporten var begränsad till att behandla utvalda produkter med hög omsättning från två utvalda leverantörer till Bygg Ole. Efterfrågan för alla produkter i rapporten utom en är icke säsongsberoende. Särskild hänsyn har dessutom tagits till servicenivå, kapitalkostnader och variation i efterfråga. Resultatet gav att en implementering av modellen skulle ge lägre lagernivåer och därmed lägre lagerkostnader. Slutsatsen från rapporten var att modellen skulle kunna implementeras, eventuellt med höga administrativa kostnader i början. Bygg Ole har också en möjlighet att använda ett ordersystem baserat på den matematiska GSL-modellen (Guaranteed Service-Level) i kombination med prognoser över efterfrågan producerade av försäljningsavdelningen på Bygg Ole. Detta skulle potentiellt kunna öka precisionen i lagerhanteringen. Den nuvarande lagerräntan är relativt lågt bestämd och därför minskas de beräknade besparingarna från implementering av modellen. Om lagerräntan skulle vara högre skulle den ekonomiska fördelen med implementeringen vara tydligare. Rekommendationen till Bygg Ole är att tillämpa den rekommenderade GSL-modellen i kombination med ett system för prognos över efterfrågan på några utvalda produkter och sedan utvärdera resultatet. / The aim of this thesis was to examine possible improvements in the inventory management and procedure of ordering at Bygg Ole Saltsjö-Boo. A combination of aspects from both Systems Engineering and Industrial Engineering and Management has been used. In the report, a Guaranteed Service-Level model based on historical data of sales in combination with relevant theories about inventory carrying cost has been applied. The study was limited to specific chosen products with high sales from two selected suppliers of Bygg Ole. All these products in the study except one experienced low seasonal variety in demand. Furthermore special consideration was taken to service level, cost of capital and variability of demand. The result was that an implementation of the model would yield lower inventory levels and therefore lower carrying costs of inventory. The conclusion from the report was that the model could be implemented, although with possibly high administrative costs in the beginning. Bygg Ole also has a possibility of using an ordering system based on the mathematical GSL-model (Guaranteed Service-Level) in combination with forecasts of demand conducted by the sales department of Bygg Ole. This could potentially increase precision in the inventory management. The current inventory carrying charge is compounded relatively low and therefore decreases the calculated savings from implementing the model. If the carrying charge would be higher, the benefits of implementation would be more evident. The recommendation for Bygg Ole is to apply the recommended GSL-model in combination with a demand forecast planning system on a few selected products and then evaluate the result.
2

How to Get Rich by Fund of Funds Investment - An Optimization Method for Decision Making

Colakovic, Sabina January 2022 (has links)
Optimal portfolios have historically been computed using standard deviation as a risk measure.However, extreme market events have become the rule rather than the exception. To capturetail risk, investors have started to look for alternative risk measures such as Value-at-Risk andConditional Value-at-Risk. This research analyzes the financial model referred to as Markowitz 2.0 and provides historical context and perspective to the model and makes a mathematicalformulation. Moreover, practical implementation is presented and an optimizer that capturesthe risk of non-extreme events is constructed, which meets the needs of more customized investment decisions, based on investment preferences. Optimal portfolios are generated and anefficient frontier is made. The results obtained are then compared with those obtained throughthe mean-variance optimization framework. As concluded from the data, the optimal portfoliowith the optimal weights generated performs better regarding expected portfolio return relativeto the risk level for the investment.
3

Anomaly Detection for Portfolio Risk Management : An evaluation of econometric and machine learning based approaches to detecting anomalous behaviour in portfolio risk measures / Avvikelsedetektering för Riskhantering av Portföljer : En utvärdering utav ekonometriska och maskininlärningsbaserade tillvägagångssätt för att detektera avvikande beteende hos portföljriskmått

Westerlind, Simon January 2018 (has links)
Financial institutions manage numerous portfolios whose risk must be managed continuously, and the large amounts of data that has to be processed renders this a considerable effort. As such, a system that autonomously detects anomalies in the risk measures of financial portfolios, would be of great value. To this end, the two econometric models ARMA-GARCH and EWMA, and the two machine learning based algorithms LSTM and HTM, were evaluated for the task of performing unsupervised anomaly detection on the streaming time series of portfolio risk measures. Three datasets of returns and Value-at-Risk series were synthesized and one dataset of real-world Value-at-Risk series had labels handcrafted for the experiments in this thesis. The results revealed that the LSTM has great potential in this domain, due to an ability to adapt to different types of time series and for being effective at finding a wide range of anomalies. However, the EWMA had the benefit of being faster and more interpretable, but lacked the ability to capture anomalous trends. The ARMA-GARCH was found to have difficulties in finding a good fit to the time series of risk measures, resulting in poor performance, and the HTM was outperformed by the other algorithms in every regard, due to an inability to learn the autoregressive behaviour of the time series. / Finansiella institutioner hanterar otaliga portföljer vars risk måste hanteras kontinuerligt, och den stora mängden data som måste processeras gör detta till ett omfattande uppgift. Därför skulle ett system som autonomt kan upptäcka avvikelser i de finansiella portföljernas riskmått, vara av stort värde. I detta syftet undersöks två ekonometriska modeller, ARMA-GARCH och EWMA, samt två maskininlärningsmodeller, LSTM och HTM, för ändamålet att kunna utföra så kallad oövervakad avvikelsedetektering på den strömande tidsseriedata av portföljriskmått. Tre dataset syntetiserades med avkastningar och Value-at-Risk serier, och ett dataset med verkliga Value-at-Risk serier fick handgjorda etiketter till experimenten i denna avhandling. Resultaten visade att LSTM har stor potential i denna domänen, tack vare sin förmåga att anpassa sig till olika typer av tidsserier och för att effektivt lyckas finna varierade sorters anomalier. Däremot så hade EWMA fördelen av att vara den snabbaste och enklaste att tolka, men den saknade förmågan att finna avvikande trender. ARMA-GARCH hade svårigheter med att modellera tidsserier utav riskmått, vilket resulterade i att den preseterade dåligt. HTM blev utpresterad utav de andra algoritmerna i samtliga hänseenden, på grund utav dess oförmåga att lära sig tidsserierna autoregressiva beteende.

Page generated in 0.021 seconds