Spelling suggestions: "subject:"vanderwaals' forces"" "subject:"derwaals' forces""
51 |
Surprises in theoretical Casimir physics : quantum forces in inhomogeneous mediaSimpson, William M. R. January 2014 (has links)
This thesis considers the problem of determining Casimir-Lifshitz forces in inhomogeneous media. The ground-state energy of the electromagnetic field in a piston-geometry is discussed. When the cavity is empty, the Casimir pressure on the piston is finite and independent of the small-scale physics of the media that compose the mirrors. However, it is demonstrated that, when the cavity is filled with an inhomogeneous dielectric medium, the Casimir energy is cut-off dependent. The local behavior of the stress tensor commonly used in calculations of Casimir forces is also determined. It is shown that the usual expression for the stress tensor is not finite anywhere within such a medium, whatever the temporal dispersion or index profile, and that this divergence is unlikely to be removed by modifying the regularisation. These findings suggest that the value of the Casimir pressure may be inextricably dependent on the detailed behavior of the mirror and the medium at large wave vectors. This thesis also examines two exceptions to this rule: first, the case of an idealised metamaterial is considered which, when introduced into a cavity, reduces the magnitude of the Casimir force. It is shown that, although the medium is inhomogeneous, it does not contribute additional scattering events but simply modifies the effective length of the cavity, so the predicted force is finite and can be stated exactly. Secondly, a geometric argument is presented for determining a Casimir stress in a spherical mirror filled with the inhomogeneous medium of Maxwell's fish-eye. This solution questions the idea that the Casimir force of a spherical mirror is repulsive, but prompts additional questions concerning regularisation and the role of non-local effects in determining Casimir forces.
|
52 |
A contribution to microassembly: a study of capillary forces as a gripping principleLambert, Pierre 10 December 2004 (has links)
La tendance à la miniaturisation des produits n'est pas sans influence sur l'évolution de leurs moyens de production et d'assemblage. En effet, dû à la réduction d'échelle, l'assemblage de petits composants (appelé microassemblage) est perturbé par les forces de surface comme les forces de capillarité. Ces forces, exercées par le pont liquide reliant manipulateur et composant, sont habituellement négligeables (et négligées) dans l'assemblage conventionnel dominé par les forces de gravité. L'approche originale suivie dans ce travail consiste à tirer parti de ces effets et à les utiliser pour la manipulation de microcomposants, c'est-à-dire de composants dont la taille va de quelques dizaines de microns à quelques millimètres. Ce travail tente donc d'apporter quelques réponses aux problèmes de conception posés par un tel choix: quels sont les avantages d'une telle approche? Comment ces forces `fonctionnent-elles'? Sont-elles suffisamment grandes pour manipuler des microcomposants? Comment, dans ce cas, relâcher le composant? Quel rôle la tension de surface joue-t-elle? En quoi le choix des matériaux est-il important? Comment optimiser la conception du manipulateur? Tout au long de ce travail, le lecteur trouvera un inventaire des principes de manipulation existants, les éléments nécessaires à la modélisation des forces de capillarité, ainsi que la description de la simulation et du banc d'essai développés par l'auteur dans le but d'étudier ces paramètres de conception. Les résultats présentés dans cette thèse recouvrent essentiellement deux thèmes: quelles sont les règles de conception à suivre pour maximiser les forces de capillarité (problème de la préhension) et comment choisir une stratégie de relâche adéquate (problème de la relâche)? / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
|
53 |
The agglomeration of fine iron particles in a fluidised bed cascadeBlundell, Daniel Laurence. January 2005 (has links)
Thesis (Ph.D.)--University of Wollongong, 2005. / Typescript. Includes bibliographical references: p. 198-203.
|
54 |
Aplicações da equação de Van Der Waals no estudo de colisões entre átomos e moléculasNova, Cássia Vanessa [UNESP] 15 March 2012 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:18Z (GMT). No. of bitstreams: 0
Previous issue date: 2012-03-15Bitstream added on 2014-06-13T21:00:47Z : No. of bitstreams: 1
nova_cv_me_bauru.pdf: 1980542 bytes, checksum: 9aad1da39bf5c30c6e4d38ca0be07fef (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / A teoria cinética dos gases tem como primeira aproximação o comportamento observado considerando o gás como tendo um comportamento ideal, isto é, pode ser modelado através da lei do gás ideal. As equações de estado conhecidas, como a equação do gás ideal e de van der Waals descrevem, dentro das aproximações do modelo, situações bastante diversas. Neste trabalho iremos utilizar a lei dos gases ideais, ou mais especificamente a implementação da Equação de van der Waals para o entendimento do fenômeno de colisões que entre átomos e moléculas / The kinetic theory of gases has a a first approximation the observed behavior considering the gas to have an ideal behavior, ie it can be modeled by the ideal bas law. The equations of state known as the ideal gas equation and Van der Waals describe, within the approximations of the model, very different situations. In this paper we use the ideal gas law, or more specifically the implementation of the Vann der Waals equation for understandign the phenomenon of collisions between atoms and molecules
|
55 |
Aplicações da equação de Van Der Waals no estudo de colisões entre átomos e moléculas /Nova, Cássia Vanessa. January 2012 (has links)
Orientador: Aguinaldo Robinson de Souza / Banca: Americo Sheitiro Tabata / Banca: Nelson Henrique Morgon / O Programa de Pós Graduação em Ciência e Tecnologia de Materiais, PosMat, tem caráter institucional e integra as atividades de pesquisa em materiais de diversos campi / Resumo: A teoria cinética dos gases tem como primeira aproximação o comportamento observado considerando o gás como tendo um comportamento ideal, isto é, pode ser modelado através da lei do gás ideal. As equações de estado conhecidas, como a equação do gás ideal e de van der Waals descrevem, dentro das aproximações do modelo, situações bastante diversas. Neste trabalho iremos utilizar a lei dos gases ideais, ou mais especificamente a implementação da Equação de van der Waals para o entendimento do fenômeno de colisões que entre átomos e moléculas / Abstract: The kinetic theory of gases has a a first approximation the observed behavior considering the gas to have an ideal behavior, ie it can be modeled by the ideal bas law. The equations of state known as the ideal gas equation and Van der Waals describe, within the approximations of the model, very different situations. In this paper we use the ideal gas law, or more specifically the implementation of the Vann der Waals equation for understandign the phenomenon of collisions between atoms and molecules / Mestre
|
56 |
Novel correlated quantum phases in moiré transition metal dichalcogenidesGhiotto, Augusto January 2023 (has links)
In narrow electron bands in which the Coulomb interaction energy becomes comparable to the bandwidth, interactions can drive new quantum phases. In this dissertation, we achieve narrow bands by twisting two atomically thin layers of the semiconducting van der Waals material WSe₂. The resulting moiré potential from the twist angle modulates the electronic bands, yielding minibands of tens of meV on the valence band. We perform transport measurements at cryogenic temperatures and observe signatures of collective phases over twist angles that range from 4 to 5.1°.
At half-band filling, a correlated insulator appeared that is tunable with both twist angle and displacement field. Near the boundary between ordered and disordered quantum phases, several experiments have demonstrated metallic behaviour that defies the Landau Fermi paradigm. We find that the metal-insulator transition as a function of both density and displacement field is continuous. At the metal–insulator boundary, the resistivity displays strange metal behaviour at low temperatures, with dissipation comparable to that at the Planckian limit. Further into the metallic phase, Fermi liquid behaviour is recovered at low temperature, and this evolves into a quantum critical fan at intermediate temperatures, before eventually reaching an anomalous saturated regime near room temperature. An analysis of the residual resistivity indicates the presence of strong quantum fluctuations in the insulating phase. We further show via magnetotransport measurements that new correlated electronic phases can exist independent of moiré commensurability, and are instead driven by weak interactions in twisted WSe₂.
The first of these phases is an antiferromagnetic metal that is driven by proximity to the van Hove singularity (vHS), which trails a range of incommensurate dopings. The temperature, magnetic field and density dependence of the Hall effect carry signatures of the reconstructed Fermi surface due to itinerant magnetic ordering. The second is an excitonic metal-insulator phase that exists at high external magnetic field in the vicinity of half-filling of the moiré superlattice. For a 4.2° sample, magnetic field dependence of the longitudinal resistance shows metallic behavior at fields above 5 T, but transitions to an insulating state above ∼ 24 T. A detailed analysis of of the Landau fans and the high field 𝝆_𝜘𝛾 near the gap rules out the possibility of a trivial insulator. We propose an Ising excitonic insulator as the most likely scenario.
Moreover, in the electron-imbalanced excitonic metal, a set of correlated Landau levels emerge. The observation of tunable collective phases in a simple band, which hosts only two holes per unit cell at full filling, establishes twisted bilayer transition metal dichalcogenides as an ideal platform to study correlated physics in two dimensions on a triangular lattice.
|
57 |
Correlated Phases beyond Commensurate Fillings in Twisted Transition Metal DichalcogenidesSong, Yuan January 2024 (has links)
Ever since the discovery of van der Waals materials, the condensed matter community has developed a wide spectrum of techniques to probe various phases in these fascinating materials.
Among these phases, correlated phenomena are of great importance to physicists, and recent progress on moiré heterostructures offers a highly flexible and tunable platform to study them. It has been established in previous works that twisted WSe₂, a type of semiconductor in the van der Waals family, has great potential in hosting a large number of correlated phases and phase transitions.
However, it is believed that commensurability plays a critical role in the stability of correlations. In this thesis, we demonstrate correlated physics in twisted WSe₂ beyond commensurate fillings, as well as their magnetic field dependence, via electric transport measurements. At modest magnetic fields, a Stoner-like instability in the system near van Hove singularities causes a reconstruction of the Fermi surface.
On the other hand, at extremely high magnetic fields, the system exhibits reentrant insulating behaviors that are possibly due to the presence of strong excitonic interactions. Furthermore, correlated topological states are observed away from half-filling in the imbalanced excitonic metallic regime. This wide range of tunability once again proves moiré heterostructures as a promising platform to simulate quantum correlation effects on a lattice.
|
58 |
Fluctuation-mediated interactions of atoms and surfaces on a mesoscopic scaleHaakh, Harald Richard January 2012 (has links)
Thermal and quantum fluctuations of the electromagnetic near field of atoms and macroscopic bodies play a key role in quantum electrodynamics (QED), as in the Lamb shift. They lead, e.g., to atomic level shifts, dispersion interactions (Van der Waals-Casimir-Polder interactions), and state broadening (Purcell effect) because the field is subject to boundary conditions. Such effects can be observed with high precision on the mesoscopic scale which can be accessed in micro-electro-mechanical systems (MEMS) and solid-state-based magnetic microtraps for cold atoms (‘atom chips’).
A quantum field theory of atoms (molecules) and photons is adapted to nonequilibrium situations. Atoms and photons are described as fully quantized while macroscopic bodies can be included in terms of classical reflection amplitudes, similar to the scattering approach of cavity QED. The formalism is applied to the study of nonequilibrium two-body potentials. We then investigate the impact of the material properties of metals on the electromagnetic surface noise, with applications to atomic trapping
in atom-chip setups and quantum computing, and on the magnetic dipole contribution to the Van der Waals-Casimir-Polder potential in and out of thermal equilibrium. In both cases, the particular properties of superconductors are of high interest. Surface-mode contributions, which dominate the near-field fluctuations, are discussed in the context of the (partial) dynamic atomic dressing after a rapid change of a system parameter and in the Casimir interaction between two conducting plates, where nonequilibrium configurations can give rise to repulsion. / Thermische und Quantenfluktuationen des elektromagnetischen Nahfelds von Atomen und makroskopischen Körpern spielen eine Schlüsselrolle in der Quantenelektrodynamik (QED), wie etwa beim Lamb-Shift. Sie führen z.B. zur Verschiebung atomarer Energieniveaus, Dispersionswechselwirkungen (Van der Waals-Casimir-Polder-Wechselwirkungen) und Zustandsverbreiterungen (Purcell-Effekt), da das Feld Randbedingungen unterliegt. Mikroelektromechanische Systeme (MEMS) und festkörperbasierte magnetische Fallen für kalte Atome (‘Atom-Chips’) ermöglichen den Zugang zu mesoskopischen Skalen, auf denen solche Effekte mit hoher Genauigkeit beobachtet werden können.
Eine Quantenfeldtheorie für Atome (Moleküle) und Photonen wird an Nichtgleichgewichtssituationen angepasst. Atome und Photonen werden durch vollständig quantisierte Felder beschrieben, während die Beschreibung makroskopischer Körper, ähnlich wie im Streuformalismus (scattering approach) der Resonator-QED, durch klassische Streuamplituden erfolgt. In diesem Formalismus wird das Nichtgleich-
gewichts-Zweiteilchenpotential diskutiert. Anschließend wird der Einfluss der Materialeigenschaften von normalen Metallen auf das elektromagnetische Oberflächenrauschen, das für magnetische Fallen für kalte Atome auf Atom-Chips und für Quantencomputer-Anwendungen von Bedeutung ist, sowie auf den Beitrag des magnetischen Dipolmoments zum Van der Waals-Casimir-Polder-Potential im thermisch-
en Gleichgewicht und in Nichtgleichgewichtssituationen untersucht. In beiden Fällen sind die speziellen Eigenschaften von Supraleitern von besonderem Interesse. Beiträge von Oberflächenmoden, die die Feldfluktuationen im Nahfeld dominieren, werden im Kontext des (partiellen) dynamischen Dressing nach einer raschen Änderung eines Systemparameters sowie für die Casimir-Wechselwirkung zweier metallischer Platten diskutiert, zwischen denen in Nichtgleichgewichtssituationen Abstoßung auftreten kann.
|
59 |
Studium přírodního a vytvoření umělého nanostrukturovaného povrchu gekona / Study of gecko adhesion force and formation of a nanostructured gecko mimicking surfaceVyskočilová, Marta January 2016 (has links)
This thesis deals with the surface of a gecko in relation to its adhesion ability. Understanding the mechanism of movement and adhesion principle is important for the design and manufacture of nanostructured material. Likewise, knowledge of the origin of the self-cleaning ability allows the description of the influence of surface structure on movement and forces acting at the contact. The work describes the process of making nanostructured surface, which was modified in order to obtain maximum adhesion forces. The material properties were determined by the values of wettability and by force spectrum measurement. Their results were compared with the theoretical assumption of capillary forces and other possibilities to increase adhesion.
|
60 |
Engineering and Activating Room-Temperature Quantum Light Emission in Two-Dimensional Materials with Nano-Programmable StrainYanev, Emanuil January 2024 (has links)
Micro– and subsequently nano–scale fabrication techniques have reshaped our world more drastically than almost any other development of the last half-century. Spurred by the invention of the transistor at Bell Labs in 1947, monolithic integrated circuits—or microchips in the colloquial lexicon—were developed in ’59, kickstarting the modern digital age as we know it. More recently, the maturation of classical computing technology and significant advancements in materials science have led to a boom of interest in and progress by the quantum sector on both computation and communication fronts. The explosive growth currently underway in the field of quantum information science (QIS) marks the dawning of a new age, which will undoubtedly transform our world in ways we have yet to imagine.
This dissertation seeks to leverage advanced nanofabrication approaches, atomically thin materials, and state of the art microscopy techniques to develop room-temperature single photon sources for QIS applications. A basic overview of 2D materials is provided in Chapter 1. Particular emphasis is placed on the optical properties of tungsten diselenide (WSe2), which is followed by a brief discussion of quantum emitters in 2D and other material systems. Chapter 2 describes the scanning near-field optical microscopy (SNOM) technique we use to investigate the photoluminescence (PL) response of strained WSe₂ with resolution well below the classical diffraction limit.
The third chapter is dedicated to the various fabrication methods explored and developed to produce the plasmonic substrates necessary for near-field optical studies. The first section focuses on the creation of extremely flat metallic surfaces, while the second deals with extremely sharp metallic stressors. These two platforms enable the investigations of nanobubbles—touched upon in Chapter 2—and nanowrinkles, which are the subject of discussion in Chapter 4. The strain confinement provided by these wrinkles leads to highly localized quantum dot-like states that exhibit excitation power saturation at room temperature. Together, these studies lay the groundwork for achieving high-temperature quantum emission in atomically thin semiconducting van der Waals materials.
|
Page generated in 0.049 seconds