• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 271
  • 76
  • 51
  • 32
  • 15
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 5
  • 5
  • Tagged with
  • 574
  • 72
  • 66
  • 61
  • 55
  • 52
  • 48
  • 44
  • 44
  • 43
  • 42
  • 41
  • 40
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
451

Interaction of Metal Oxides with Carbon Monoxide and Nitric Oxide for Gas Sensing Applications

Adeyemo, Adedunni D. 20 June 2012 (has links)
No description available.
452

Roll-to-roll sputtering of thermochromic VO2-based coatings onto ultra-thin flexible glass

Szelwicka, Jolanta 14 March 2024 (has links)
Thermochromic vanadium dioxide based materials undergo a metal-to-semiconductor transition. This ability can reduce the energy consumption in buildings with windows or glass facades, especially for passive cooling in warmer climates. In dependence on the temperature, the transmittance of the material for infrared light changes reversibly, regulating the amount of the solar heat transmitted into buildings. Although thermochromic vanadium dioxide based coatings have been extensively studied at laboratory scale, there are still fundamental challenges for industrial manufacturing. The present work aims to explore the prospects of the deposition of a tungsten-doped vanadium dioxide based coating onto ultra-thin glass in an upscaled roll-to-roll process. An existing laboratory scale layer stack design enabled the achievement of high performance using unipolar pulsed and high power impulse magnetron sputtering. For this purpose, a new oxygen control system was developed. Furthermore, the optical and structural properties of the deposited coatings were characterized, as well as the doping content, and further the potential for energy savings. A newly designed optical model allowed calculation of the dispersion relation of the layers and their electrical properties.:1 Introduction 1 2 Topic of the thesis 4 3 State of the art 6 3.1 Thermochromism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 Vanadium dioxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2.1 Crystalline Structure . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2.2 Phase transition – Band structure . . . . . . . . . . . . . . . . . . 12 3.2.3 Literature review of thermochromic VO2 coatings . . . . . . . . . 13 3.2.4 Limitations of VO2 in smart window applications . . . . . . . . . 14 3.2.5 Using multifunctional layers . . . . . . . . . . . . . . . . . . . . . 15 3.2.6 Reducing the transition temperature . . . . . . . . . . . . . . . . 15 3.3 Magnetron sputtering of thermochromic coatings . . . . . . . . . . . . . 17 3.3.1 Sputtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.2 Magnetron sputtering . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.3 Reactive magnetron sputtering . . . . . . . . . . . . . . . . . . . 22 3.3.4 Sputtering using multi-component targets . . . . . . . . . . . . . 24 3.3.5 Pulsed magnetron sputtering . . . . . . . . . . . . . . . . . . . . . 26 3.3.6 High-power impulse magnetron sputtering . . . . . . . . . . . . . 27 3.4 Layer growth and ion assistance . . . . . . . . . . . . . . . . . . . . . . . 30 3.5 Thin film optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.5.1 Interaction of light with surfaces . . . . . . . . . . . . . . . . . . . 34 3.5.2 Models for thin film optics . . . . . . . . . . . . . . . . . . . . . . 36 4 Methodology 39 4.1 Deposition process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1.1 Roll-to-roll process . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1.2 FOSA labX 330 Glass . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1.3 Rotatable magnetrons . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1.4 Materials used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.1.5 Oxygen flow controls . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1.6 Challenges of the roll-to-roll deposition process on UTG . . . . . 46 4.2 Deposition of ZrO2 multifunctional layer . . . . . . . . . . . . . . . . . . 47 4.3 Deposition of ZrO2/V1-xWxO2/ZrO2 with HiPIMS . . . . . . . . . . . . . 48 4.3.1 The investigation of the effect of oxygen partial pressure . . . . . 48 4.3.2 Deposition of thermochromic layers with optical emission spec- troscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4 Deposition of ZrO2/V1-xWxO2/ZrO2 with unipolar pulsed magnetron sputtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5 Coating characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.5.1 UV-Vis-NIR spectrophotometry . . . . . . . . . . . . . . . . . . . 51 4.5.2 Determination of the film properties with optical modelling . . . . 52 4.5.3 Scanning electron microscopy . . . . . . . . . . . . . . . . . . . . 55 4.6 Determination of the film thickness . . . . . . . . . . . . . . . . . . . . . 55 4.6.1 Resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.6.2 X-ray diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.6.3 Atomic force microscopy . . . . . . . . . . . . . . . . . . . . . . . 58 4.6.4 Rutherford backscattering . . . . . . . . . . . . . . . . . . . . . . 59 5 Results and discussion 61 5.1 Bottom and top ZrO2 layers for thermochromic V1-xWxO2 coating . . . . 61 5.2 Process design for the deposition of thermochromic V1-xWxO2 coating with HiPIMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2.1 The effect of oxygen partial pressure . . . . . . . . . . . . . . . . 70 5.2.2 Deposition of the layer system with optical emission spectroscopy 72 5.2.3 Determination of the W content in the thermochromic films . . . 80 5.2.4 Resistivity measurements and structure assumption . . . . . . . . 86 5.2.5 Dependence of the doping concentration in the target on the film thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2.6 Influence of the deposition temperature on the thermochromic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2.7 Influence of the film thickness on the thermochromic properties . 90 5.3 Thermochromic V1-xWxO2 coating deposited with uPMS . . . . . . . . . 93 5.4 Comparison of HiPIMS (two-layer vs three-layer systems) and uPMS for V1-xWxO2 coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6 Summary and outlook 101 6.1 Research goal and achievements . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 Layer deposition and results overview . . . . . . . . . . . . . . . . . . . . 102 6.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7 Appendix 105 8 Abbreviations 108 9 Formula symbols 109 Literature 118
453

Element Partition Between Hornblende and Biotite in the Rocks from Loon Lake Aureole, Chandos Township, Ontario

Chiang, Ming Chen 12 1900 (has links)
The geology of the northeastern and southwestern sections of the aureole of the Loon Lake pluton of Chandos township was mapped. Thirty five pairs of hornblende and biotite were separated from the rocks and spectrographically analyzed for Be, Ga, Ti, Cr, V, Li, Ni, Co, Cu, Mn, Zr, Sr, Ba and Rb. Major element analyses were made by wet chemical methods on 8 pairs of hornblende and biotite. The relations of minor and major elements are discussed in terms of distribution coefficients. / Thesis / Master of Science (MS)
454

High-efficient electrodes for novel optoelectronic devices in silicon photonics

Rosa Escutia, Álvaro 15 October 2018 (has links)
La fotónica de silicio es actualmente la tecnología mejor posicionada para reemplazar las conexiones electrónicas tanto dentro de los mismos chips, como entre ellos mismos, con el fin de mejorar su rendimiento. Las principales ventajas de la tecnología fotónica de silicio residen en su bajo coste y en su compatibilidad con las actuales técnicas de fabricación desarrolladas por la industria microelectrónica. Dicha compatibilidad permitiría fabricar tanto chips ópticos como chips híbridos que incluyan componentes ópticos y electrónicos. Los moduladores y los conmutadores optoelectrónicos resultan dispositivos fundamentales en aplicaciones de telecomunicaciones. Las principales funciones de los conmutadores y moduladores optoelectrónicos son el enrutamiento y la transmisión de datos de alta velocidad. Esta tesis aborda el diseño y la optimización de la parte eléctrica y óptica (en menor medida) con el fin de optimizar el rendimiento de tales dispositivos desde el punto de vista optoelectrónico. Además, también se tratará la introducción de nuevos materiales compatibles con el silicio y sus procesos de fabricación, como el dióxido de vanadio o el titanato de bario con el fin de demostrar sus propiedades y aplicarlas a los dispositivos optoelectrónicos con el fin de mejorar su rendimiento. / Silicon photonics is nowadays the most promising technology to replace electrical inter- and intra-connections of the chips, increasing the performance in this way. The main advantages of silicon photonics technology lie on its low cost and its compatibility with the fabrications processes of microelectronics industry developed during years which allows the mass production of silicon photonics chips as well hybrid electronic and photonic devices in the same chip. Optoelectronics switches and modulators are key building blocks in photonic devices for tele/datacom applications. Such switches and modulators are devices which provides routing functionalities and the transmission of high speed data respectively. The work of this thesis delves with the design and optimization of silicon based switches and modulators spotlighting the electrical elements. Additionally, the work of this theses deals with the introduction of new silicon-compatible materials as vanadium dioxide and barium titanate, with the aim of demonstrating its functionalities and develop high-performance optoelectronic devices. / La fotònica de silici és actualment la tecnologia millor posicionada per a reemplaçar les connexions electròniques tant dins del propis xips, com entre ells mateixos, amb la finalitat de millorar el seu rendiment. Els principals avantatges de la tecnologia fotònica de silici resideixen en el seu baix cost i en la seua compatibilitat amb les actuals tècniques de fabricació desenvolupades per la indústria microelectrònica. Aquesta compatibilitat permetria fabricar tant xips òptics com a xips híbrids que incloguen components òptics i electrònics. Els moduladors i els commutadors optoelectrònics resulten dispositius fonamentals en aplicacions de telecomunicacions. Les principals funcions dels commutadors i moduladors optoelectrònics són l'encaminament i la transmissió de dades d'alta velocitat. Aquesta tesi aborda el disseny i l'optimització de la part elèctrica i òptica (en menor mesura) amb la finalitat d'optimitzar el rendiment de tals dispositius des del punt de vista optoelectrònic. A més, també es tractarà la introducció de nous materials compatibles amb el silici i els seus processos de fabricació, com el diòxid de vanadi o el titanato de bari amb la finalitat de demostrar les seues propietats i aplicar-les als dispositius optoelectrònics amb la finalitat de millorar el seu rendiment. / Rosa Escutia, Á. (2018). High-efficient electrodes for novel optoelectronic devices in silicon photonics [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/110364
455

Von molekularen Precursoren zu Oxidphasen im System V2O5 / Nb2O5. Darstellung, Eigenschaften, katalytische Aktivität / From molecular precursors to oxidic phases in the system V2O5 / Nb2O5. Synthesis, characterization and catalytic activity

Mayer-Uhma, Tobias 20 December 2004 (has links) (PDF)
In this work, mixed alkoxides of general formula [V(O)Nbx(OR)(3+5x)] (R = n-C3H7 and C2H5, x = 1, 4.5 and 9) are obtained. They are used to prepare complex (V/Nb)-pentoxides. Different spectroscopic methods, for example UV/VIS, resonance raman, infrared, temperature dependant 51V NMR and two dimensional 1H or 13C NMR, are used to elucidate structural details. It can be shown that the alkoxide precursor is a mixture of monomers and dimers which exchange very quickly. 2 % [V(O)Nb(OPr)8] (Pr = propyl) exists in a 0.1 molar solution. This complex is in equilibrium with V(O)(OPr)3 and Nb(OPr)5. Nb(OPr)5 itself exchanges with [Nb(OPr)5]2. For nuclear magnetic resonance experiments the exchange has to be slowed down using low temperatures.Controlled hydrolysis at 5 °C of a mixture of V(O)(OPr)3 and [Nb(OEt)5]2 in propanol leads to a clear transparent gel. The ratio of V : Nb is 1 : 1, 1 : 4.5 or 1 : 9, and oxalic acid is used as a chelating agent. Moreover, a dried product of a frozen solution of ammonium vanadate and ammonium oxyoxalatoniobate in water is found to be an appropriate precursor for the fore-mentioned oxides. Thermal decomposition of the gels and of the freeze dried products is monitored thermoanalytically and mass spectrometrically.The compositions of the resulting phases are examined and compared with the composition obtained via conventional synthesis (sintering of powder mixtures). Phases VNbxO(2.5+2.5x) (x = 1, 4.5 and 9) are obtained through the sol-gel technique and freeze drying at distinctly lower temperatures. VNbO5 crystallizes between 400 and 650 °C and V4Nb18O55 between 550 and 750 °C. A clean, non-reduced phase, VNb9O25, crystallizes above 1100 °C in oxygen. Below this temperature, solid solutions of V2O5 in TT- or M-Nb2O5 exist. Conventionally, pure VNbO5 is not obtainable. Some sol-gel synthesized products have the advantage of a more complete phase formation. In this way, a new phase of composition VNb9O25 can be found. The phase is homöotypic to M-Nb2O5.An additional advantage of the sol-gel synthesis lies in relatively high surface areas. Adversely, carbon remaining from the alcohol groups favours the thermodynamically stable phase VNb9O25 over the phase V4Nb18O55. Consequently, the freeze drying method seems to be the best way to get metastable phases in the system V2O5/x·Nb2O5.The formation of the complex oxides is controlled through the thermodynamics at phase boundaries. Therefore, to get mixed phases, structurally similar starting materials are preferred. In other words, using V2O5 and TT-Nb2O5 as starting materials the mixed phase similar to TT-Nb2O5 can be obtained. B-Nb2O5 as precursor yields another mixed phase similar to B-Nb2O5. In this work, this effect is called the "structure directing effect". It is explained through the consumption of free enthalpy at the phase boundaries.As an additional point, catalytic activities of the complex oxides are examined. Because of a synergism of the known good activity of V2O5 and the good selectivity of Nb2O5, a strongly enhanced activity of the mixed oxides is found. Large surface areas further improve the activity. Connections between oxygen partial pressure, band gap and catalytic activity are found. A dilution of V2O5 in Nb2O5 down to 10 mol-% also causes an enhancement of catalytic activity. / In der Arbeit werden durch die Synthese gemischter Alkoxide der Gesamtzusammensetzung [V(O)Nbx(OR)(3+5x)] (R = n-C3H7 und C2H5, x = 1, 4,5 und 9) sowie gefriergetrockneter Pulver Ausgangssubstanzen für gemischte, komplexe Vanadium- und Nioboxide erhalten. Untersuchungen mittels UV/VIS-, Resonanz-Raman- und IR-Spektroskopie sowie temperaturabhängiger 51V- und zweidimensionaler 1H-/13C NMR-Spektroskopie zeigen, dass es sich bei der Alkoxid-Vorstufe um ein Gemisch aus monomeren und dimeren Einheiten handelt, die in schnellem Gleichgewicht miteinander stehen. So liegt [V(O)Nb(OPr)8] als Donorkomplex vor, der im Gleichgewicht mit VO(OPr)3 und Nb(OPr)5 steht. Nb(OPr)5 steht wiederum im Gleichgewicht mit [Nb(OPr)5]2. Die Bildung und der Zerfall des Donorkomplexes erfolgen bei Raumtemperatur so schnell, dass er nur durch UV/VIS- und Resonanz-Raman-Spektroskopie sichtbar wird; bei der Kernresonanzspektroskopie muss der Austausch durch tiefe Temperaturen verlangsamt werden.Mittels kontrollierter Hydrolyse einer Mischung aus VO(OPr)3 und [Nb(OEt)5]2 in Propanol mit Oxalsäure als Chelatbildner und der Verlangsamung der Kondensation über die Erniedrigung der Temperatur wird ein homogenes, transparentes Gel aus V2O5 und Nb2O5 hergestellt. Daneben wird durch eine Lösung aus Ammoniumvanadat und Ammoniumoxyoxalatoniobat ein für die Gefriertrocknung geeigneter Precursor zur Synthese der Oxidphasen gefunden. Die Zersetzung des Gels und der gefriergetrockneten Pulver werden mittels DTA, TG und Massenspektrometrie untersucht und die Phasenausbildung mit der Reaktion von konventionellen Festkörpergemengen verglichen.Die dabei entstehenden metastabilen und thermodynamisch stabilen Phasen VNbxO(2,5+2,5x) (x = 1, 4,5 und 9) sind durch das Sol-Gel-Verfahren sowie durch die Gefriertrocknung bei deutlich niedrigeren Temperaturen und mit geringerem Fremdphasenanteil als bei der konventionellen Synthese erhältlich. VNbO5 existiert bis 650 °C, V4Nb18O55 bis 750 °C, darüber wandelt sich jede Zusammensetzung in VNb9O25 bzw. in verschiedene Nb2O5-Modifikationen und V2O5 um. Die Sol-Gel-Methode liefert im Vergleich zur Gefriertrocknung bei 900-1100 °C den Vorteil der schnelleren Phasenausbildung durch die größere Homogenität der Vorstufe. So erhält man Zwischenstufen, die sonst nur mit Beimengungen zu synthetisieren sind. In diesem Zusammenhang kann erstmalig eine zu M-Nb2O5 homöotype Verbindung der Zusammensetzung VNb9O25 erhalten werden. Ein weiterer Vorteil der Sol-Gel-Synthese ist der Erhalt größerer Oberflächen nach der Zersetzung. Nachteilig erscheinen jedoch bei einer Synthese bei tiefen Temperaturen (500-800 °C) die Alkoholatreste. So entstehen wesentlich eher die thermodynamisch begünstigten Phasen, z. B. VNb9O25 vor V4Nb18O55 und V4Nb18O55 vor VNbO5. Weiterhin macht sich die komplizierte Präparation der Gele bemerkbar; daher stellt im Allgemeinen die Gefriertrockung die Methode der Wahl dar.Die Ausbildung der komplexen Oxide erfolgt stark geprägt durch die Thermodynamik an den Phasengrenzen. Daher erfolgt eine bevorzugte Ausbildung strukturähnlicher Mischphasen. Diese erstmalig in diesem Ausmaß festgestellte Tatsache wird in der Arbeit der Strukturdirigierende Effekt genannt. Eine Erklärung dieses Effektes erfolgt anhand des Verbrauchs der Freien Enthalpie an den Phasengrenzen.Aufgrund eines Synergismus der Eigenschaften von V2O5 und Nb2O5 bei der oxidativen Dehydrierung von Propan zu Propen (relativ hohe katalytische Aktivität von V2O5 und hohe Selektivität von Nb2O5) wird eine überproportional hohe katalytische Aktivität bei den Mischoxiden erhalten. Die durch die unkonventionellen Methoden erhaltenen großen Oberflächen verbessern die Aktivität weiter. Es können Zusammenhänge festgestellt werden zwischen der Sauerstoffabgabetendenz, der Redoxkraft, der Bandlücke der Mischoxide und der katalytischen Aktivität. Die Einzigartigkeit des Nb2O5-Wirtsgitters bewirkt bei der Verdünnung von V2O5 darin eine hohe katalytische Leistungssteigerung.
456

"Developing Device Quality Vanadium Dioxide Thin Films for Infrared Applications"

Bharathi, R January 2016 (has links) (PDF)
Vanadium oxides are being used as the thermal sensing layer because of their applications in infrared detectors. They have high temperature coefficient of resistance, favorable electrical resistance and compatibility with the MEMS technology. Of all oxides of vanadium, only vanadium dioxide (VO2)has been highly investigated as it shows first order transition (semiconducting to metal transition-SMT)at 68 oC. First order transition is understood as the sharp change in the electrical resistance. The change in resistivity in this case is of the order of 105 over a temperature change of 0.1 oC at 68 oC in a single crystal. Doping vanadium oxides with elements like Mo and W reduce the transition temperature. This is very important for room temperature electrical and optical detection. Though most of the research groups subscribe to PLD, cost-effective methods with large area deposition are major focus of this research. Hence for synthesizing VO2 in bulk and thin films, Solution Combustion Synthesis (SCS), Ultrasonic Nebulized Spray Pyrolysis of Aqueous Combustion Mixture (UNSPACM) Chemical vapour deposition (CVD)and microwave are explored. Synthesis of doped VO2 films in CVD has not been done extensively to yield optical quality thin films. Chapter I surveys the use of phase transition in oxides system for a variety of practical applications. In particular, Vanadium dioxide (VO2) is chosen as it is found to be very useful for infrared and metamaterials based applications. VO2 is known for its first-order semiconducting to metallic transition (SMT). This chapter attempts to explain the influence of processing, doping, annealing, etc on the SMT characteristics. Important aspects such as the idea of hysteresis in VO2 and similarity to martensitic transformation are discussed. The scope and objectives of the thesis are discussed here. Chapter II explains in detail the materials and methods used to synthesize VO2 both in bulk and in thin lm form and methods used to study their characteristics. Brief description on the principle and the working of the home-built experimental set up needed for this study is elicited. In chapter III, attempts were made to understand the phase stability of VO2 and the evolution of crystal structures during the phase transition. VO2 crystallizes in P21/c space group at room temperatures with lattice parameters a=5.752 Ab=4.526 Ac=5.382 Aα=90 β=122.60 γ=90 . Precise control of synthesis parameters is required in stabilizing pure phase in bulk as well as thin lm form. This study focuses on the novel large scale two step synthesis of VO2 using Solution Combustion Synthesis. This involves synthesis of product utilizing redox reaction between metal nitrate and suitable fuel. Generally the products are nanocrystalline in nature due to self-propagation of the exothermic combustion reaction. First step involved the synthesis of V2O5 by combustion reaction between Vanadyl nitrate and urea. In the second step, the as-synthesized V2O5 has been reduced by a novel reduction technique to form monophasic VO2. The presence of competing phases like M1, M2, M3 and R are investigated by XRD, Raman spectroscopy, DSC, Optical and high temperature X-ray diffraction. Chapter IV deals with the reduction in phase transition temperature by doping the SCS synthesized VO2 with W and Mo. Effect of doping on the transition temperature was studied using differential scanning calorimetry (DSC) in both W and Mo. Electrical characteristics of Mo doped VO2 and Optical characteristics of the W-doped VO2 were also studied using four probe resistivity measurements and UV-VIS Spectroscopy respectively. W addition was found to be more effective in reducing the phase transition temperature. To understand further more on the W addition, X-ray photo-electron spectroscopy measurements were performed. W-addition alters the V4+-V4+ bonding and with W addition it is observed that V was present in V3+state. W was present in W6+ state. The addition of W to VO2 introduces more electrons to the systems and disturbs the V4+-V4+ thus reducing the phase transition temperature of VO2. Chapter V describes the large scale, large area deposition of thin films of VO2 by a cost effective method. A novel technique to deposit vanadium dioxide thin films namely, UNSPACM is developed. This simple two-step process involves synthesis of a V2O5 lm on an LaAlO3(LAO) substrate followed by a controlled reduction to form single phase VO2. The formation of M1 phase (P21/c) is confirmed by Raman spectroscopic studies. A thermally activated metal{insulator transition (MIT) was observed at 61 oC, where the resistivity changes by four orders of magnitude. The infrared spectra also show a dramatic change in reflectance from 13% to over 90% in the wavelength range of 7-15 m. This indicates the suitability of the films for optical switching applications at infrared frequencies. A trilayer metamaterial absorber, composed of a metal structure/dielectric spacer/vanadium dioxide (VO2) ground plane, is shown to switch reversibly between reflective and absorptive states as a function of temperature. The VO2 lm, which changes its conductivity by four orders of magnitude across an insulator{metal transition, enables the switching by forming a resonant absorptive structure at high temperatures while being inactive at low temperatures. The fabricated metamaterial shows a modulation of the reflectivity levels of 58% at a frequency of 22.5 THz and 57% at a frequency of 34.5 THz. Chapter VI explains the W doped VO2 thin films synthesized by UN-SPACM. Morphology of the thin films was found to be consisting of globular and porous nanoparticles having size 20 nm. Transition temperature decreased with the addition of W. 1.8 at. %W doping in VO2 transition temperature has reduced upto 25 oC. It is noted that W-doping in the pro-cess of reducing the transition temperature, alters the local structure and also increases room temperature carrier concentration. The presence of W, as was seen in Chapter IV, altered V4+-V4+ bonds and introduced V3+. W was found to be in W6+ state suggesting W addition increased the carrier concentration. Hall Effect measurements suggested the increased carrier con-centration. The roughness of the synthesized films were very high for them to be of de-vice quality, despite encouraging results obtained by electrical measurements. Hence in order to further improve the smoothness and thereby the optical quality of thin films, Chemical Vapour Deposition (CVD) is employed. Chapter VII outlines the effect of processing parameters and post pro-cessing annealing on the semiconductor-metallic transition of VO2. Here in this chapter, the influence of substrate temperature on the SMT properties of VO2 is explored. At different substrate temperatures, the percentage of phase fraction of V in V3+, 4+ and V5+ differed. Besides, the morphology also varied with substrate temperatures. Similarly it is observed that with annealing the VO2 film deposited on glass substrates, SMT properties enhanced which was attributed to filling out of oxygen vacancies. Si based substrates and non-Si based substrates were used for depositing VO2 thin films by CVD. Their temperature coefficient of resistance and SMT properties were studied in order to understand their potential in bolometer and thermal to optical valve based applications. Chapter VIII involves the study of VO2 thin films for thermal to optical valves. ITO coated glass substrates were used for the purpose. Thin films were deposited by both UNSPACM and CVD. It was observed that the reflectivity pro les of the films synthesized by the above said methods were very different. Hence in the process of understanding the huge difference in the reflectivity pro les, classical harmonic oscillator, Lorentzian model was employed to t the experimental data at room temperature whereas Drude-Lorentzian model was used to t the data at higher temperature (at 100 oC- after transition). With this fitting plasma frequencies of the CVD films were calculated. It was observed that defect chemistry of films synthesized by these methods were different. In order to further improve the smoothness of the films, microwave method was proposed in Chapter IX. The preliminary results showed the presence of uniform spheres and 3 D hierarchical structures of VO2 consisting of nanorods. This was extended to deposit VO2 thin films on ITO. DSC and Infrared reflectance pro le of VO2 nanopowder suggested the phase transition. Chapter X summarizes the work done for the thesis and provides insights to the applications and to the future work. The work reported in this thesis has been carried out by the candidate as part of the Ph.D.program. She hopes that this would constitute a worth-while contribution towards development of VO2 thin film technology and its challenges for reliable infrared device applications.
457

Von molekularen Precursoren zu Oxidphasen im System V2O5 / Nb2O5. Darstellung, Eigenschaften, katalytische Aktivität

Mayer-Uhma, Tobias 10 January 2005 (has links)
In this work, mixed alkoxides of general formula [V(O)Nbx(OR)(3+5x)] (R = n-C3H7 and C2H5, x = 1, 4.5 and 9) are obtained. They are used to prepare complex (V/Nb)-pentoxides. Different spectroscopic methods, for example UV/VIS, resonance raman, infrared, temperature dependant 51V NMR and two dimensional 1H or 13C NMR, are used to elucidate structural details. It can be shown that the alkoxide precursor is a mixture of monomers and dimers which exchange very quickly. 2 % [V(O)Nb(OPr)8] (Pr = propyl) exists in a 0.1 molar solution. This complex is in equilibrium with V(O)(OPr)3 and Nb(OPr)5. Nb(OPr)5 itself exchanges with [Nb(OPr)5]2. For nuclear magnetic resonance experiments the exchange has to be slowed down using low temperatures.Controlled hydrolysis at 5 °C of a mixture of V(O)(OPr)3 and [Nb(OEt)5]2 in propanol leads to a clear transparent gel. The ratio of V : Nb is 1 : 1, 1 : 4.5 or 1 : 9, and oxalic acid is used as a chelating agent. Moreover, a dried product of a frozen solution of ammonium vanadate and ammonium oxyoxalatoniobate in water is found to be an appropriate precursor for the fore-mentioned oxides. Thermal decomposition of the gels and of the freeze dried products is monitored thermoanalytically and mass spectrometrically.The compositions of the resulting phases are examined and compared with the composition obtained via conventional synthesis (sintering of powder mixtures). Phases VNbxO(2.5+2.5x) (x = 1, 4.5 and 9) are obtained through the sol-gel technique and freeze drying at distinctly lower temperatures. VNbO5 crystallizes between 400 and 650 °C and V4Nb18O55 between 550 and 750 °C. A clean, non-reduced phase, VNb9O25, crystallizes above 1100 °C in oxygen. Below this temperature, solid solutions of V2O5 in TT- or M-Nb2O5 exist. Conventionally, pure VNbO5 is not obtainable. Some sol-gel synthesized products have the advantage of a more complete phase formation. In this way, a new phase of composition VNb9O25 can be found. The phase is homöotypic to M-Nb2O5.An additional advantage of the sol-gel synthesis lies in relatively high surface areas. Adversely, carbon remaining from the alcohol groups favours the thermodynamically stable phase VNb9O25 over the phase V4Nb18O55. Consequently, the freeze drying method seems to be the best way to get metastable phases in the system V2O5/x·Nb2O5.The formation of the complex oxides is controlled through the thermodynamics at phase boundaries. Therefore, to get mixed phases, structurally similar starting materials are preferred. In other words, using V2O5 and TT-Nb2O5 as starting materials the mixed phase similar to TT-Nb2O5 can be obtained. B-Nb2O5 as precursor yields another mixed phase similar to B-Nb2O5. In this work, this effect is called the "structure directing effect". It is explained through the consumption of free enthalpy at the phase boundaries.As an additional point, catalytic activities of the complex oxides are examined. Because of a synergism of the known good activity of V2O5 and the good selectivity of Nb2O5, a strongly enhanced activity of the mixed oxides is found. Large surface areas further improve the activity. Connections between oxygen partial pressure, band gap and catalytic activity are found. A dilution of V2O5 in Nb2O5 down to 10 mol-% also causes an enhancement of catalytic activity. / In der Arbeit werden durch die Synthese gemischter Alkoxide der Gesamtzusammensetzung [V(O)Nbx(OR)(3+5x)] (R = n-C3H7 und C2H5, x = 1, 4,5 und 9) sowie gefriergetrockneter Pulver Ausgangssubstanzen für gemischte, komplexe Vanadium- und Nioboxide erhalten. Untersuchungen mittels UV/VIS-, Resonanz-Raman- und IR-Spektroskopie sowie temperaturabhängiger 51V- und zweidimensionaler 1H-/13C NMR-Spektroskopie zeigen, dass es sich bei der Alkoxid-Vorstufe um ein Gemisch aus monomeren und dimeren Einheiten handelt, die in schnellem Gleichgewicht miteinander stehen. So liegt [V(O)Nb(OPr)8] als Donorkomplex vor, der im Gleichgewicht mit VO(OPr)3 und Nb(OPr)5 steht. Nb(OPr)5 steht wiederum im Gleichgewicht mit [Nb(OPr)5]2. Die Bildung und der Zerfall des Donorkomplexes erfolgen bei Raumtemperatur so schnell, dass er nur durch UV/VIS- und Resonanz-Raman-Spektroskopie sichtbar wird; bei der Kernresonanzspektroskopie muss der Austausch durch tiefe Temperaturen verlangsamt werden.Mittels kontrollierter Hydrolyse einer Mischung aus VO(OPr)3 und [Nb(OEt)5]2 in Propanol mit Oxalsäure als Chelatbildner und der Verlangsamung der Kondensation über die Erniedrigung der Temperatur wird ein homogenes, transparentes Gel aus V2O5 und Nb2O5 hergestellt. Daneben wird durch eine Lösung aus Ammoniumvanadat und Ammoniumoxyoxalatoniobat ein für die Gefriertrocknung geeigneter Precursor zur Synthese der Oxidphasen gefunden. Die Zersetzung des Gels und der gefriergetrockneten Pulver werden mittels DTA, TG und Massenspektrometrie untersucht und die Phasenausbildung mit der Reaktion von konventionellen Festkörpergemengen verglichen.Die dabei entstehenden metastabilen und thermodynamisch stabilen Phasen VNbxO(2,5+2,5x) (x = 1, 4,5 und 9) sind durch das Sol-Gel-Verfahren sowie durch die Gefriertrocknung bei deutlich niedrigeren Temperaturen und mit geringerem Fremdphasenanteil als bei der konventionellen Synthese erhältlich. VNbO5 existiert bis 650 °C, V4Nb18O55 bis 750 °C, darüber wandelt sich jede Zusammensetzung in VNb9O25 bzw. in verschiedene Nb2O5-Modifikationen und V2O5 um. Die Sol-Gel-Methode liefert im Vergleich zur Gefriertrocknung bei 900-1100 °C den Vorteil der schnelleren Phasenausbildung durch die größere Homogenität der Vorstufe. So erhält man Zwischenstufen, die sonst nur mit Beimengungen zu synthetisieren sind. In diesem Zusammenhang kann erstmalig eine zu M-Nb2O5 homöotype Verbindung der Zusammensetzung VNb9O25 erhalten werden. Ein weiterer Vorteil der Sol-Gel-Synthese ist der Erhalt größerer Oberflächen nach der Zersetzung. Nachteilig erscheinen jedoch bei einer Synthese bei tiefen Temperaturen (500-800 °C) die Alkoholatreste. So entstehen wesentlich eher die thermodynamisch begünstigten Phasen, z. B. VNb9O25 vor V4Nb18O55 und V4Nb18O55 vor VNbO5. Weiterhin macht sich die komplizierte Präparation der Gele bemerkbar; daher stellt im Allgemeinen die Gefriertrockung die Methode der Wahl dar.Die Ausbildung der komplexen Oxide erfolgt stark geprägt durch die Thermodynamik an den Phasengrenzen. Daher erfolgt eine bevorzugte Ausbildung strukturähnlicher Mischphasen. Diese erstmalig in diesem Ausmaß festgestellte Tatsache wird in der Arbeit der Strukturdirigierende Effekt genannt. Eine Erklärung dieses Effektes erfolgt anhand des Verbrauchs der Freien Enthalpie an den Phasengrenzen.Aufgrund eines Synergismus der Eigenschaften von V2O5 und Nb2O5 bei der oxidativen Dehydrierung von Propan zu Propen (relativ hohe katalytische Aktivität von V2O5 und hohe Selektivität von Nb2O5) wird eine überproportional hohe katalytische Aktivität bei den Mischoxiden erhalten. Die durch die unkonventionellen Methoden erhaltenen großen Oberflächen verbessern die Aktivität weiter. Es können Zusammenhänge festgestellt werden zwischen der Sauerstoffabgabetendenz, der Redoxkraft, der Bandlücke der Mischoxide und der katalytischen Aktivität. Die Einzigartigkeit des Nb2O5-Wirtsgitters bewirkt bei der Verdünnung von V2O5 darin eine hohe katalytische Leistungssteigerung.
458

Solidification microstructure selection and coupled eutectic growth in Al-Fe and Al-Fe-Mn alloys

Wang, Yun January 2000 (has links)
No description available.
459

Surface and sensor studies of doped titanium dioxide

Duncan, Morris January 2000 (has links)
No description available.
460

Molecular mechanism of insulin-enhancing and -mimetic action of Vanadium compounds

Mehdi, Mohamad Z. January 2005 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Page generated in 0.0315 seconds