• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • 1
  • Tagged with
  • 24
  • 24
  • 24
  • 20
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The role of the catalyst in the growth of one-dimensional nanostructures

Kirkham, Melanie 10 November 2009 (has links)
Quasi one-dimensional (1D) nanostructures show great promise for many applications, including in solar cells, nanogenerators and chemical sensors, due to the high surface-to-volume ratio and unique properties of nanostructures. The growth of these nanostructures is commonly catalyzed by metal nanoparticles and generally attributed to the vapor-liquid-solid (VLS) mechanism. The purpose of this research is to better understand the role of the catalyst nanoparticles in the growth of 1D nanostructures, in order to allow improved control of the synthesis process. To this end, nanostructures were grown with a variety of compositions, including Au- and Sn-catalyzed ZnO, Au-catalyzed FexOy and Au-catalyzed Si nanostructures. The morphology of the nanostructures was characterized with electron microscopy, and the crystallographic orientation with X-ray texture analysis. The catalyst particles were further characterized with both in-situ and post-growth X-ray diffraction. The types of bonding in the source material and catalyst play a significant role in the diffusion path of the source material to the growth front and in the catalyst particle state during growth. Dissimilar bonding types in the source material and catalyst prevent bulk diffusion of the source material through the catalyst, thereby preventing eutectic melting of the catalyst. These results bring new insight into the catalyzed growth of 1D nanostructures and assist in the informed choice of appropriate catalyst materials, which may aid the utilization of 1D nanostructures in energy-related and other applications.
22

Unveiling Transient Behaviors in Heterostructure Nanowires

Boulanger, Jonathan P. 10 1900 (has links)
<p>GaAs/GaP heterostructure nanowires (NWs) were grown on GaAs(111)B and Si(111) substrates by gold (Au) assisted vapor-liquid-solid (VLS) growth in a molecular beam epitaxy (MBE) system. NW morphology and crystal structure were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Early results indicated substantial differences in the length and crystal structure of the GaAs/GaP heterostructures. Efforts to remove these inhomogeneities required an improved Au VLS seed deposition method as well as a better understanding of VLS growth across GaAs/GaP hetero-interfaces.</p> <p>Experiments with GaAs/GaP heterostructures yielded the observation of changes in crystal phase in GaP, including the first reported occurrence of the 4H polytype. These observations revealed the presence of transient growth behavior during the formation of the GaAs to GaP hetero-interface that was unique to the VLS technique. Further characterization required the need to move from VLS seeds formed by annealing thin Au films to Au particles formed precisely by electron beam lithography (EBL). NW growth using EBL patterned Au seeds was discovered to be inhibited by the formation of a thin silicon oxide layer, formed at low temperatures by Au-enhanced silicon oxidation. Elimination of this layer immediately prior to growth resulted in successful patterned VLS growth.</p> <p>A systematic study of the transient GaP growth behavior was then conducted using patterned arrays to grow GaAs/GaP heterostructure NWs with frequent, periodic oscillations in the group V composition. These oscillations were measured by high angle annular dark field (HAADF) to determine the instantaneous growth rate of many NWs. A phenomenological model was fit to the data and transient growth rate behavior following a GaAs to GaP hetero-interface was understood on the basis of transient droplet compositions, which arise due to the large difference in As or P alloy concentrations required to reach the critical supersaturation.</p> / Doctor of Philosophy (PhD)
23

Silicon nanowire solar cells with μc-Si˸H absorbers for tandem radial junction devices / Cellules solaires à jonction radiale à base de nanofils de silicium avec absorbeur en μc-Si˸H pour dispositifs tandem

Dai, Letian 27 September 2019 (has links)
Dans cette thèse, nous avons fabriqué des cellules solaires à jonction radiale en nanofils de silicium avec du silicium microcristallin hydrogéné (µc-Si:H) comme absorbeur, par dépôt chimique en phase vapeur assisté par plasma à basse température (PECVD). Pour contrôler la densité de nanofils sur les substrats, nous avons utilisé des nanoparticules (NP) de dioxyde d'étain (SnO₂) d'un diamètre moyen de 55 nm, disponibles dans le commerce, comme précurseur du catalyseur Sn pour la croissance des nanofils de silicium. La distribution des nanoparticules de SnO₂ sur le substrat a été contrôlée par centrifugation et dilution du colloïde de SnO₂, en combinaison avec la fonctionnalisation du substrat. Par la suite, le SnO₂ est réduit en Sn métallique après le traitement par plasma de H₂, suivi de la croissance, par la technique vapeur-liquide-solide (VLS) assistée par plasma, de nanofils de Si sur lesquels sont déposées les couches P, I et N constituant les cellules solaires à jonction radiale. Nous avons atteint un taux de croissance élevé des nanofils de Si, jusqu'à 70%, avec une très large gamme de densité, de 10⁶ à 10⁹ /cm². Comme approche supplémentaire de contrôle de la densité des nanofils, nous avons utilisé du Sn évaporé comme précurseur du catalyseur Sn. Nous avons étudié l'effet de l'épaisseur de Sn évaporé, l'effet de la durée du traitement au plasma de H₂ et l'effet du débit de gaz H₂ dans le dans le mélange de précurseurs, sur la densité des nanofils. L'ellipsométrie spectroscopique in-situ (SE) a été utilisée pour contrôler la croissance des nanofils et le dépôt des couches de µc-Si:H sur les SiNWs. En combinant les résultats de in-situ SE et de microscopie électronique à balayage, une relation entre l'intensité du signal de SE pendant la croissance et la longueur et la densité des nanofils a été démontrée, ce qui permet d'estimer ces paramètres en cours de croissance. Nous avons réalisé une étude systématique des matériaux (couches intrinsèques et dopées de type n ou p de µc-Si:H, couches dopées d'oxyde de silicium microcristallin hydrogéné, µcSiOx:H) et des cellules solaires obtenues dans deux réacteurs à plasma appelés "PLASFIL" et "ARCAM". Les épaisseurs de revêtement sur substrat lisse et sur les nanofils ont été déterminées et nous avons obtenu une relation linéaire entre les deux, ce qui permet de concevoir un revêtement conforme sur les nanofils pour chaque couche avec une épaisseur optimale. Les paramètres des nanofils et des matériaux, affectant la performance des cellules solaires à jonction radiale, ont été systématiquement étudiés, les principaux étant la longueur et la densité des nanofils, l'épaisseur de la couche intrinsèque de µc-Si:H, l'utilisation de µc-SiOx:H et le réflecteur arrière en Ag. Enfin, avec les cellules solaires à jonction radiale en nanofils de silicium optimisées utilisant le µc-Si:H comme absorbeur, nous avons atteint un rendement de conversion de l'énergie de 4,13 % avec Voc = 0,41 V, Jsc = 14,4 mA/cm² et FF = 69,7%. Cette performance est supérieure de plus de 40 % à l'efficacité record de 2,9 % publiée précédemment. / In this thesis, we have fabricated silicon nanowire (SiNW) radial junction solar cells with hydrogenated microcrystalline silicon (μc-Si:H) as the absorber via low-temperature plasma-enhanced chemical vapor deposition (PECVD). To control the density of NW on the substrates, we have used commercially available tin dioxide (SnO₂) nanoparticles (NPs) with an average diameter of 55 nm as the precursor of Sn catalyst for the growth of SiNWs. The distribution of SnO₂ NPs on the substrate has been controlled by centrifugation and the dilution of the SnO₂ colloid, combined with the functionalization of the substrate. Subsequently, SnO₂ is reduced to metallic Sn after the H₂ plasma treatment, followed by the plasma-assisted vapor-liquid-solid (VLS) growth of SiNWs upon which the P, I and N layers constituting the radial junction solar cells are deposited. We have achieved a high yield growth of SiNWs up to 70% with a very wide range of NW density, from 10⁶ to 10⁹ /cm². As an additional approach of controlling the density of SiNWs we have used evaporated Sn as the precursor of Sn catalyst. We have studied the effect of the thickness of evaporated Sn, the effect of duration of H₂ plasma treatment and the effect of H₂ gas flow rate in the plasma, on the density of SiNWs.In-situ spectroscopic ellipsometry (SE) was used for monitoring the growth of SiNWs and the deposition of the layers of μc-Si:H on SiNWs. Combining in-situ SE and SEM results, a relationship between the intensity of SE signal and the length and the density of SiNWs during the growth was demonstrated, which allows to estimate the density and the length of SiNWs during the growth. We have carried out a systematic study of materials (intrinsic, p-type,n-type µc-Si:H and µcSiOx:H doped layers) and solar cells obtained in two plasma reactors named “PLASFIL” and “ARCAM”. The thicknesses of coating on the flat substrate and on the SiNWs have been determined with a linear relation which helps to design a conformal coating on SiNWs for each layer with an optimal thickness. The parameters of the SiNWs and the materials, affecting the performance of radial junction solar cells, have been systematically studied, the main ones being the length and the density of SiNWs, the thickness of intrinsic layer of μc-Si:H on SiNWs, the use of the hydrogenated microcrystalline silicon oxide (μc-SiOx:H) and the back reflector Ag. Finally, with the optimized silicon nanowire radial junction solar cells using the μc-Si:H as the absorber we have achieved an energy conversion efficiency of 4.13 % with Voc = 0.41 V, Jsc = 14.4 mA/cm² and FF = 69.7%. This performance is more than 40 % better than the previous published record efficiency of 2.9 %.
24

Homogeneidade química, interfaces e defeitos estruturais em nanofios de semicondutores III-V / Chemical homogeneity, interfaces and structural defects in III-V semiconductor nanowires

Tizei, Luiz Henrique Galvão 17 August 2018 (has links)
Orientador: Daniel Mário Ugarte / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-17T20:15:26Z (GMT). No. of bitstreams: 1 Tizei_LuizHenriqueGalvao_D.pdf: 12237887 bytes, checksum: e97ac7041ecfd4c30088cf9b43d9849a (MD5) Previous issue date: 2011 / Resumo: O desenvolvimento de novos materias tem grande interesse devido à ocorrência de novos fenômenos e propriedades, as quais podem ser usadas em futuras aplicações tecnológicas. Em particular, nas últimas décadas, esforços imensos foram realizados buscando compreender nanomateriais e os efeitos da redução de tamanho e de dimensão. Entre os diferentes avanços alcançados, podemos citar o desenvolvimento significativo de nanofios semicondutores (estruturas quasi-unidimensionais) com dezenas ou centenas de nanometros de espessura e milhares de nanometros de comprimento. O método mais utilizado para o crescimento de nanofios é o método catalítico chamado VLS (Vapor-Líquido-Sólido), no qual uma nanopartícula metálica serve como sorvedouro preferencial de átomos de um vapor e, também, como posição para a formação de um sólido (nanofio). O VLS foi proposto por Wagner e Ellis nos anos 60. Em nossos trabalhos, nos concentramos no estudo de nanofios de semicondutores III-V crescidos em um reator de Epitaxia de Feixe Químico (CBE) catalisados por nanopartículas de Au. Mais especificamente, estudamos nanofios de InP, InAs, InGaP, InAsP e heteroestruturas InP/InAs/InP. Como a qualidade de interfaces e homogeneidade química do material crescido, influenciam diretamente as propriedades ópticas e elétricas de nanofios, nossa pesquisa nos levou a avaliar os limites da aplicação de diversas técnicas de microscopia eletrônica de transmissão aplicadas: TEM (Microscopia Eletrônica de Transmissão), STEM (Microscopia Eletrônica de Transmissão em Varredura), HRTEM (Microscopia Eletrônica de Transmissão de Alta Resolução), EDS (Espectroscopia de Raios-X Dispersados em Energia) e EELS (Espectroscopia de Perda de Energia de Elétrons). Como consequência, determinamos os limites de detecção de variações químicas e de medidas de larguras de interfaces das diferentes técnicas. Em particular, devido às limitações impostas pelo dano por radiação no material, propusemos o uso de deslocamentos químicos de plasmons (EELS) para a caracterização química de nanoestruturas de semicondutores III-V. Desenvolvemos uma metodologia para a análise de seções transversais de nanofios de InAsP. Os experimentos realizados indicam a diferença entre os semicondutores produzidos por crescimento axial (catalítico) e por radial (bidimensional). Além disso, a análise química detalhada de heteroestruturas InP/InAs/InP levou a detecção de concentrações inesperados de As no segmento final de InP. Interpretamos esta observação como uma indicação de que As difunde através da nanopartícula catalisadora durante o crescimento, demonstrando uma rota de incorporação de elementos do grupo V em nanofios crescidos pelo método VLS. Finalmente, estudamos os efeitos de defeitos estruturais extendidos, como discordâncias na morfologia e distorções estruturais de nanofios. Neste sentido, observamos a torção de Eshelby em nanofios de InP contendo discordâncias em parafuso únicas. Nossos resultados mostram que as taxas de torção medida são muito maiores (até 100%) do que o previsto pela teoria elástica macroscópica. Isto mostra as mudanças significativas nas propriedades mecânicas e estruturais em nanoestruturas e ilustra o papel importante de estudos detalhados de microscopia eletrônica para a análise de deformações em nanoestruturas / Abstract: The development of new materials has great interest due to the possibility of finding new phenomena and properties, which can be used in technological applications. In particular, in the last decades, huge efforts have been made in order to understand nanomaterials and, the effects of size and dimensionality reduction. Among different advances, it is worth noting the significant development of semiconductor nanowires (quasi-one dimensional structures) with tens or hundreds of nanometers in diameter and thousands of nanometers in length. The catalytic method VLS (Vapor-Liquid-Solid) is the most used approach for nanowire preparation, in which a metal nanoparticle serves as a preferential sink for atoms from a vapor and, also, as the position for the solid nucleation; this method was proposed by Wagner and Ellis in the 60s. In our work, we have focused on the study of III-V semiconductor nanowires grown by Chemical Beam Epitaxy (CBE) catalyzed by Au nanoparticles. Specifically, we have studied different III-V nanowires (InP, InAs, InGaP and InAsP), as ell as, some heterostructured wires (InP/InAs/InP). As the quality of interfaces and the chemical homogeneity of materials directly influence the optical and electrical properties of nanowires, our research have led us to assess the limit of applicability of several characterization techniques based on transmission electron microscopy: TEM (Transmission Electron Microscopy), STEM (Scanning Transmission Electron Microscopy), HRTEM (High Resolution Transmission Electron Microscopy), EDS (Energy Dispersed X-Ray Spectroscopy) and EELS (Electron Energy Loss Spectroscopy). As a consequence, we have determined the detection limit for the measurement of chemical composition variations and interface widths. In particular, due to the limitations imposed by radiation damage on III-V nanowires, we have proposed the use of Plasmon chemical shifts (EELS) to the chemical characterization of III-V nanostructures. We have analyzed the cross sections of InAsP nanowires and we have been able to reveal a difference between the semiconductors materials produced by the axial (catalytic) and radial (bidimensional) growth. Through the detailed chemical analysis of InP/InAs/InP heterostructures we have detected an unexpected concentration of As in the last InP segment of the heterostructure. We have interpreted this result as an indication that As diffuses through the catalytic nanoparticle during growth. This demonstrates an incorporation route for group V atoms in nanowires grown by VLS. Finally, we have studied the effects of extended structural defects, like dislocations, in the morphology and structural distortions of nanowires. In this sense, we have observed the Eshelby twist in InP nanowires containing a single screw dislocation. Our results show that measured twist rates are much larger (up to 100%) than the predictions from the elasticity theory. This shows the significant change of mechanical and structural properties in nanoscale and, illustrates the important role of a careful electron microscopy studies to analyze deformations in nanostructures / Doutorado / Física da Matéria Condensada / Doutor em Ciências

Page generated in 0.0384 seconds