Spelling suggestions: "subject:"ariable dde contrôle"" "subject:"ariable dee contrôle""
1 |
Simulation de centres de contactsBuist, Éric January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
2 |
Méthodes statistiques pour l’estimation du rendement paramétrique des circuits intégrés analogiques et RF / Statistical methods for the parametric yield estimation of analog/RF integratedcircuitsDesrumaux, Pierre-François 08 November 2013 (has links)
De nombreuses sources de variabilité impactent la fabrication des circuits intégrés analogiques et RF et peuvent conduire à une dégradation du rendement. Il est donc nécessaire de mesurer leur influence le plus tôt possible dans le processus de fabrications. Les méthodes de simulation statistiques permettent ainsi d'estimer le rendement paramétrique des circuits durant la phase de conception. Cependant, les méthodes traditionnelles telles que la méthode de Monte Carlo ne sont pas assez précises lorsqu'un faible nombre de circuits est simulé. Par conséquent, il est nécessaire de créer un estimateur précis du rendement paramétrique basé sur un faible nombre de simulations. Dans cette thèse, les méthodes statistiques existantes provenant à la fois de publications en électroniques et non-Électroniques sont d'abord décrites et leurs limites sont mises en avant. Ensuite, trois nouveaux estimateurs de rendement sont proposés: une méthode de type quasi-Monte Carlo avec tri automatique des dimensions, une méthode des variables de contrôle basée sur l'estimation par noyau, et une méthode par tirage d'importance. Les trois méthodes reposent sur un modèle mathématique de la métrique de performance du circuit qui est construit à partir d'un développement de Taylor à l'ordre un. Les résultats théoriques et expérimentaux obtenus démontrent la supériorité des méthodes proposées par rapport aux méthodes existantes, à la fois en terme de précision de l'estimateur et en terme de réduction du nombre de simulations de circuits. / Semiconductor device fabrication is a complex process which is subject to various sources of variability. These variations can impact the functionality and performance of analog integrated circuits, which leads to yield loss, potential chip modifications, delayed time to market and reduced profit. Statistical circuit simulation methods enable to estimate the parametric yield of the circuit early in the design stage so that corrections can be done before manufacturing. However, traditional methods such as Monte Carlo method and corner simulation have limitations. Therefore an accurate analog yield estimate based on a small number of circuit simulations is needed. In this thesis, existing statistical methods from electronics and non-Electronics publications are first described. However, these methods suffer from sever drawbacks such as the need of initial time-Consuming circuit simulations, or a poor scaling with the number of random variables. Second, three novel statistical methods are proposed to accurately estimate the parametric yield of analog/RF integrated circuits based on a moderate number of circuit simulations: An automatically sorted quasi-Monte Carlo method, a kernel-Based control variates method and an importance sampling method. The three methods rely on a mathematical model of the circuit performance metric which is constructed based on a truncated first-Order Taylor expansion. This modeling technique is selected as it requires a minimal number of SPICE-Like circuit simulations. Both theoretical and simulation results show that the proposed methods lead to significant speedup or improvement in accuracy compared to other existing methods.
|
3 |
Simulation de centres de contactsBuist, Éric January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
4 |
Eléments de théorie du risque en finance et assurance / Elements of risk theory in finance and insuranceMostoufi, Mina 17 December 2015 (has links)
Cette thèse traite de la théorie du risque en finance et en assurance. La mise en pratique du concept de comonotonie, la dépendance du risque au sens fort, est décrite pour identifier l’optimum de Pareto et les allocations individuellement rationnelles Pareto optimales, la tarification des options et la quantification des risques. De plus, il est démontré que l’aversion au risque monotone à gauche, un raffinement pertinent de l’aversion forte au risque, caractérise tout décideur à la Yaari, pour qui, l’assurance avec franchise est optimale. Le concept de comonotonie est introduit et discuté dans le chapitre 1. Dans le cas de risques multiples, on adopte l’idée qu’une forme naturelle pour les compagnies d’assurance de partager les risques est la Pareto optimalité risque par risque. De plus, l’optimum de Pareto et les allocations individuelles Pareto optimales sont caractérisées. Le chapitre 2 étudie l’application du concept de comonotonie dans la tarification des options et la quantification des risques. Une nouvelle variable de contrôle de la méthode de Monte Carlo est introduite et appliquée aux “basket options”, aux options asiatiques et à la TVaR. Finalement dans le chapitre 3, l’aversion au risque au sens fort est raffinée par l’introduction de l’aversion au risque monotone à gauche qui caractérise l’optimalité de l’assurance avec franchise dans le modèle de Yaari. De plus, il est montré que le calcul de la franchise s’effectue aisément. / This thesis deals with the risk theory in Finance and Insurance. Application of the Comonotonicity concept, the strongest risk dependence, is described for identifying the Pareto optima and Individually Rational Pareto optima allocations, option pricing and quantification of risk. Furthermore it is shown that the left monotone risk aversion, a meaningful refinement of strong risk aversion, characterizes Yaari’s decision makers for whom deductible insurance is optimal. The concept of Comonotonicity is introduced and discussed in Chapter 1. In case of multiple risks, the idea that a natural way for insurance companies to optimally share risks is risk by risk Pareto-optimality is adopted. Moreover, the Pareto optimal and individually Pareto optimal allocations are characterized. The Chapter 2 investigates the application of the Comonotonicity concept in option pricing and quantification of risk. A novel control variate Monte Carlo method is introduced and its application is explained for basket options, Asian options and TVaR. Finally in Chapter 3 the strong risk aversion is refined by introducing the left-monotone risk aversion which characterizes the optimality of deductible insurance within the Yaari’s model. More importantly, it is shown that the computation of the deductible is tractable.
|
Page generated in 0.0509 seconds