• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 7
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Statistická inference v modelech s proměnlivými koeficienty / Statistical inference in varying coefficient models

Splítek, Martin January 2018 (has links)
Tato práce se zabývá modely s promìnlivými koe cienty se za- mìøením na statistickou inferenci. Hlavní my¹lenkou tìchto modelù je pou¾ití regresních koe cientù, mìnících se v závislosti na nìjakém modi kátoru vlivu, namísto konstantních koe cientù klasické lineární regrese. Nejprve si de nujeme tyto modely a jejich odhadové procedury, kterých bylo doposud publikováno nì- kolik variant. K odhadu se pou¾ívá lokální regrese nebo rùzné druhy splajnù { vyhlazovací, polynomiální èi penalizované. Od metody odhadu se následnì od- víjí i daná statistická inference, ke které uvedeme odvozené vychýlení, rozptyl, asymptotickou normalitu, kon denèní pásma a testování hypotéz. Hlavním cílem na¹í práce je kompaktnì shrnout vybrané metody a jejich inferenci. Na závìr je navr¾ena proceduru pro výbìr promìnných.
2

Statistická inference v modelech s proměnlivými koeficienty / Statistical inference in varying coefficient models

Splítek, Martin January 2017 (has links)
Tato práce se zabývá modely s promìnlivými koe cienty se za- mìøením na statistickou inferenci. Hlavní my¹lenkou tìchto modelù je pou¾ití regresních koe cientù, mìnících se v závislosti na nìjakém modi kátoru vlivu, namísto konstantních koe cientù klasické lineární regrese. Nejprve si de nujeme tyto modely a jejich odhadové procedury, kterých bylo doposud publikováno nì- kolik variant. K odhadu se pou¾ívá lokální regrese nebo rùzné druhy splajnù { vyhlazovací, polynomiální èi penalizované. Od metody odhadu se následnì od- víjí i daná statistická inference, ke které uvedeme odvozené vychýlení, rozptyl, asymptotickou normalitu, kon denèní pásma a testování hypotéz. Hlavním cílem na¹í práce je kompaktnì shrnout vybrané metody a jejich inferenci. Na závìr je navr¾ena proceduru pro výbìr promìnných.
3

Longitudinal Regression Analysis Using Varying Coefficient Mixed Effect Model

Al-Shaikh, Enas 15 October 2012 (has links)
No description available.
4

Two Essays on Single-index Models

Wu, Zhou 24 September 2008 (has links)
No description available.
5

Statistical Modeling and Analysis of Bivariate Spatial-Temporal Data with the Application to Stream Temperature Study

Li, Han 04 November 2014 (has links)
Water temperature is a critical factor for the quality and biological condition of streams. Among various factors affecting stream water temperature, air temperature is one of the most important factors related to water temperature. To appropriately quantify the relationship between water and air temperatures over a large geographic region, it is important to accommodate the spatial and temporal information of the steam temperature. In this dissertation, I devote effort to several statistical modeling techniques for analyzing bivariate spatial-temporal data in a stream temperature study. In the first part, I focus our analysis on the individual stream. A time varying coefficient model (VCM) is used to study the relationship between air temperature and water temperature for each stream. The time varying coefficient model enables dynamic modeling of the relationship, and therefore can be used to enhance the understanding of water and air temperature relationships. The proposed model is applied to 10 streams in Maryland, West Virginia, Virginia, North Carolina and Georgia using daily maximum temperatures. The VCM approach increases the prediction accuracy by more than 50% compared to the simple linear regression model and the nonlinear logistic model. The VCM that describes the relationship between water and air temperatures for each stream is represented by slope and intercept curves from the fitted model. In the second part, I consider water and air temperatures for different streams that are spatial correlated. I focus on clustering multiple streams by using intercept and slope curves estimated from the VCM. Spatial information is incorporated to make clustering results geographically meaningful. I further propose a weighted distance as a dissimilarity measure for streams, which provides a flexible framework to interpret the clustering results under different weights. Real data analysis shows that streams in same cluster share similar geographic features such as solar radiation, percent forest and elevation. In the third part, I develop a spatial-temporal VCM (STVCM) to deal with missing data. The STVCM takes both spatial and temporal variation of water temperature into account. I develop a novel estimation method that emphasizes the time effect and treats the space effect as a varying coefficient for the time effect. A simulation study shows that the performance of the STVCM on missing data imputation is better than several existing methods such as the neural network and the Gaussian process. The STVCM is also applied to all 156 streams in this study to obtain a complete data record. / Ph. D.
6

Statistical inference for varying coefficient models

Chen, Yixin January 1900 (has links)
Doctor of Philosophy / Department of Statistics / Weixin Yao / This dissertation contains two projects that are related to varying coefficient models. The traditional least squares based kernel estimates of the varying coefficient model will lose some efficiency when the error distribution is not normal. In the first project, we propose a novel adaptive estimation method that can adapt to different error distributions and provide an efficient EM algorithm to implement the proposed estimation. The asymptotic properties of the resulting estimator is established. Both simulation studies and real data examples are used to illustrate the finite sample performance of the new estimation procedure. The numerical results show that the gain of the adaptive procedure over the least squares estimation can be quite substantial for non-Gaussian errors. In the second project, we propose a unified inference for sparse and dense longitudinal data in time-varying coefficient models. The time-varying coefficient model is a special case of the varying coefficient model and is very useful in longitudinal/panel data analysis. A mixed-effects time-varying coefficient model is considered to account for the within subject correlation for longitudinal data. We show that when the kernel smoothing method is used to estimate the smooth functions in the time-varying coefficient model for sparse or dense longitudinal data, the asymptotic results of these two situations are essentially different. Therefore, a subjective choice between the sparse and dense cases may lead to wrong conclusions for statistical inference. In order to solve this problem, we establish a unified self-normalized central limit theorem, based on which a unified inference is proposed without deciding whether the data are sparse or dense. The effectiveness of the proposed unified inference is demonstrated through a simulation study and a real data application.
7

Modely s proměnlivými koeficienty / Varying coefficient models

Sekera, Michal January 2017 (has links)
The aim of this thesis is to provide an overview of the varying coefficient mod- els - a class of regression models that allow the coefficients to vary as functions of random variables. This concept is described for independent samples, longi- tudinal data, and time series. Estimation methods include polynomial spline, smoothing spline, and local polynomial methods for models of a linear form and local maximum likelihood method for models of a generalized linear form. The statistical properties focus on the consistency and asymptotical distribution of the estimators. The numerical study compares the finite sample performance of the estimators of coefficient functions. 1
8

Semiparametric Varying Coefficient Models for Matched Case-Crossover Studies

Ortega Villa, Ana Maria 23 November 2015 (has links)
Semiparametric modeling is a combination of the parametric and nonparametric models in which some functions follow a known form and some others follow an unknown form. In this dissertation we made contributions to semiparametric modeling for matched case-crossover data. In matched case-crossover studies, it is generally accepted that the covariates on which a case and associated controls are matched cannot exert a confounding effect on independent predictors included in the conditional logistic regression model. Any stratum effect is removed by the conditioning on the fixed number of sets of the case and controls in the stratum. However, some matching covariates such as time, and/or spatial location often play an important role as an effect modification. Failure to include them makes incorrect statistical estimation, prediction and inference. Hence in this dissertation, we propose several approaches that will allow the inclusion of time and spatial location as well as other effect modifications such as heterogeneous subpopulations among the data. To address modification due to time, three methods are developed: the first is a parametric approach, the second is a semiparametric penalized approach and the third is a semiparametric Bayesian approach. We demonstrate the advantage of the one stage semiparametric approaches using both a simulation study and an epidemiological example of a 1-4 bi-directional case-crossover study of childhood aseptic meningitis with drinking water turbidity. To address modifications due to time and spatial location, two methods are developed: the first one is a semiparametric spatial-temporal varying coefficient model for a small number of locations. The second method is a semiparametric spatial-temporal varying coefficient model, and is appropriate when the number of locations among the subjects is medium to large. We demonstrate the accuracy of these approaches by using simulation studies, and when appropriate, an epidemiological example of a 1-4 bi-directional case-crossover study. Finally, to explore further effect modifications by heterogeneous subpopulations among strata we propose a nonparametric Bayesian approach constructed with Dirichlet process priors, which clusters subpopulations and assesses heterogeneity. We demonstrate the accuracy of our approach using a simulation study, as well a an example of a 1-4 bi-directional case-crossover study. / Ph. D.
9

Estimation de paramètres et planification d’expériences adaptée aux problèmes de cinétique - Application à la dépollution des fumées en sortie des moteurs / Parameter estimation and design of experiments adapted to kinetics problems - Application for depollution of exhaust smoke from the output of engines

Canaud, Matthieu 14 September 2011 (has links)
Les modèles physico-chimiques destinés à représenter la réalité expérimentale peuvent se révéler inadéquats. C'est le cas du piège à oxyde d'azote, utilisé comme support applicatif de notre thèse, qui est un système catalytique traitant les émissions polluantes du moteur Diesel. Les sorties sont des courbes de concentrations des polluants, qui sont des données fonctionnelles, dépendant de concentrations initiales scalaires.L'objectif initial de cette thèse est de proposer des plans d'expériences ayant un sens pour l'utilisateur. Cependant les plans d'expérience s'appuyant sur des modèles, l'essentiel du travail a conduit à proposer une représentation statistique tenant compte des connaissances des experts, et qui permette de construire ce plan.Trois axes de recherches ont été explorés. Nous avons d'abord considéré une modélisation non fonctionnelle avec le recours à la théorie du krigeage. Puis, nous avons pris en compte la dimension fonctionnelle des réponses, avec l'application et l'extension des modèles à coefficients variables. Enfin en repartant du modèle initial, nous avons fait dépendre les paramètres cinétiques des entrées (scalaires) à l'aide d'une représentation non paramétrique.Afin de comparer les méthodes, il a été nécessaire de mener une campagne expérimentale, et nous proposons une démarche de plan exploratoire, basée sur l’entropie maximale. / Physico-chemical models designed to represent experimental reality may prove to be inadequate. This is the case of nitrogen oxide trap, used as an application support of our thesis, which is a catalyst system treating the emissions of the diesel engine. The outputs are the curves of concentrations of pollutants, which are functional data, depending on scalar initial concentrations.The initial objective of this thesis is to propose experiental design that are meaningful to the user. However, the experimental design relying on models, most of the work has led us to propose a statistical representation taking into account the expert knowledge, and allows to build this plan.Three lines of research were explored. We first considered a non-functional modeling with the use of kriging theory. Then, we took into account the functional dimension of the responses, with the application and extension of varying coefficent models. Finally, starting again from the original model, we developped a model depending on the kinetic parameters of the inputs (scalar) using a nonparametric representation.To compare the methods, it was necessary to conduct an experimental campaign, and we propose an exploratory design approach, based on maximum entropy.
10

Three Essays on Economic Growth and Technology Development: Considering the Spillover Effects

Liao, Shaojuan 06 June 2012 (has links)
This dissertation consists of three essays on the empirical analysis of economic growth and technology development. In particular, I consider spillover effects in different frameworks. The first chapter outlines the three topics involved and briefly discusses the motivations, methods as well as some conclusions in each of the following chapters. The second chapter considers the spillovers in economic growth and convergence. Spillovers are prevalent in nowadays' economy. I formally model the spillover effects as the interdependence of total factor productivity (TFP), and develop a model in which spillover effects of R&D through the channel of international trade make the TFPs correlated among countries. In this sense, I apply the thoughts of international trade to the economic growth framework. Empirically, I develop a three-stage generalized method of moment(GMM) to estimate the dynamic panel spatial error autoregressive model. Simulation results show that my estimator is consistent and efficient. Through counterfactual analysis, I find that there are positive spillovers through both geographic connection and trade connection. Such a positive spillover effect, however, slows down the convergence speed. Moreover, there were little spillovers in the early 1960s. Spillover effects become stronger overtime. The third chapter is about the determinants of technology development in China. What makes my paper different from others is that I take a full consideration of the spillover effects: provincial spillovers in Science and Technology (S&T) capital as well as S&T personnel, and international spillovers through trade and FDI. The most interesting point in my paper is that I consider the indirect effects of institutions on technology development. Marketization, measured by the share of state-owned enterprises (SOEs) in the economy, affects the production of technology through different channels at different stages. I use a semiparametric varying-coefficient model to account for the effects. In this paper, I find that provincial spillovers are mainly through the externalities of S&T capital stock while international spillovers occur through trade. Marketization affects the technology development through S&T capital, S&T capital spillovers and trade. Although a certain share of SOEs is necessary for technology production, the marketization process will promote the development of technology in China in the long run. The fourth chapter looks into the provincial technology spillovers from another aspect. Instead of the S&T endowment spillovers from the nearby provinces, I consider the technology transfer from the frontier province to the targeted province as well as the absorptive capacity of the targeted province itself. Two forms of technology transfer are analyzed: the technology distance due to the structural discrepancy in the patent portfolio and the technology gap because of the difference in the patent level. Through the empirical analysis, several factors contributing to patent growth, such as S&T investment, road density, international spillovers from imports and FDI, are identified. Moreover, I find that technology transfer due to the technology distance can stimulate patent growth. However, I fail to find robust evidence of technology transfer due to the technology gap, which implies that the provincial technology convergence may not exist in China. / Ph. D.

Page generated in 0.2858 seconds