Spelling suggestions: "subject:"cascular injury"" "subject:"cascular jnjury""
1 |
The role of the local renin-angiotensin system in the development of fibrocellular intimal hyperplasia following balloon catheter-induced injury in the ratAnglin, Sandra Sophia Charmain January 1995 (has links)
No description available.
|
2 |
Role of endothelial progenitor cells in acute vascular injury in manPadfield, Gareth John January 2013 (has links)
Percutaneous coronary intervention (PCI) acutely improves coronary blood flow and myocardial perfusion but at the expense of endovascular laceration and endothelial denudation. PCI associated vascular injury is associated with intense inflammation and a loss of vascular function that may lead to significant in-stent restenosis (ISR), and the potentially catastrophic, acute stent thrombosis. Reendothelialisation is essential to the restoration of normal homeostasis and facilitating vascular healing. Attention has recently focused on a novel mechanism of reendothelialisation mediated by bone marrow-derived precursor or stem cells: endothelial progenitor cells (EPC). EPC are thought to home to, and reendothelialise sites of endothelial denudation, and therefore offer the potential to provide exciting new developments in the management of cardiovascular disease. Understanding the role of EPC following vascular injury may help us to enhance vascular repair following PCI. The following studies were performed to clarify the relationships between putative EPC and vascular injury associated with PCI. In studies of patients undergoing elective PCI for stable anginal symptoms I found that concentrations of traditional circulating phenotypic EPC expressing CD34+VEGFR-2+ were unaffected, unlike CD34+CD45- cell concentrations, which were transiently increased six hours following PCI, subsequently returning to normal by 24 hours, notably without an increase in CD34+ adhesion molecule expression or VEGF-A production. However, the purported progeny of CD34+VEGFR-2+ cells, endothelial cell-colony forming units (EC-CFU), were mobilised at 24 hours, commensurate with a systemic inflammatory response. Interestingly the concentration of circulating CD34+VEGFR-2+ cells and EC-CFU were unrelated to each other, emphasising the distinction between these two cell populations. Although EC-CFU contained proliferating cells and exhibited some endothelial characteristics, EC-CFU predominantly expressed the leukocyte antigen CD45 in addition to the lymphocyte markers CD4 and CD8, and most intensely, the surface markers CD68 and CD105, epitopes commonly expressed on macrophages. Notably, EC-CFU were a potent stimulus for the migration of mononuclear cells. However, despite being mobilised in the context of an acute systemic inflammatory response and being composed of leukocytes, isolated systemic inflammation in healthy volunteers (induced by Salmonella Typhus vaccination) in the absence of vascular injury did not cause selective mobilisation of EC-CFU or indeed of putative phenotypic EPC. It is therefore likely that EC-CFU mobilisation is a relatively specific inflammatory response to cardiovascular injury. In a cohort of 201 patients undergoing coronary angiography, traditional circulating phenotypic EPC (CD34+VEGFR-2+ and CD34+VEGFR-2+CD133+) were very rare indeed and were not increased in response to an acute coronary syndrome (ACS). Furthermore traditional EPC concentrations bore no relation to atheroma burden or clinical outcome. In contrast, concentrations of CD34+CD45- cells were increased in patients with coronary artery disease compared to those with normal coronary arteries and were increased in association with more severe coronary disease. Increased concentrations of circulating CD34+CD45- cells were also associated with a shorter cumulative event-free survival. Both EC-CFU and angiogenic monocytes expressing Tie-2 and VEGFR-2 were increased following acute myocardial infarction but did not relate to coronary atheroma or clinical outcome. These studies examine the behavior of putative EPC in response to both discrete vascular injury and myocardial infarction, and isolated inflammation in the absence of vascular injury. I have identified novel characteristics of the EC-CFU assay and determined that specific factors associated with cardiovascular injury likely trigger EC-CFU mobilisation. The clinical relevance of the traditional phenotypic EPC population is uncertain, but a novel CD34+CD45- population is mobilised acutely following discrete vascular injury and is significantly associated with coronary atheroma and clinical events. It is probable that the circulating CD34+CD45- concentration reflects vascular injury and atheroma burden, and I suggest that CD34+CD45- cells are released directly from the vessel wall following PCI, and do not reflect a reparatory response. In order to determine the impact of EPC populations on vascular healing, prospective studies examining the impact of periprocedural EPC concentrations on vascular healing following PCI are required.
|
3 |
Investigating the role of endothelin receptor subtypes in the response to vascular injuryKirkby, Nicholas S. January 2009 (has links)
Neointimal hyperplasia, the proliferative growth of the innermost layer of the blood vessel wall, is a key process in the response to vascular injury, underlying conditions such as post-interventional restenosis and vein/arterial graft disease. One of the many mediators implicated in this process is endothelin-1 (ET-1), a potent vasoconstrictor with pro-inflammatory and pro-mitogenic actions, which acts through ETA and ETB receptor subtypes. It is well established that ET-1 increases, and ETA blockade reduces, neointima formation following vascular injury. The role of ETB is less clear because these receptors mediate potentially beneficial actions in endothelial cells (EC; such as nitric oxide production, and ET-1 clearance) but detrimental effects elsewhere (such as vascular smooth muscle) and it has been recently reported that non-cell-specific ETB deficiency is associated with increased neointimal lesion size following injury. The work described in this thesis addressed the hypothesis that endogenous ET-1 contributes to neointimal hyperplasia by activation of the ETA receptor, and that this action is moderated by concurrent activation of the ETB receptor expressed in EC. The role of ET receptors in neointimal lesion development was assessed using two models of femoral arterial injury in the mouse: (i) an established method of intraluminal wire-injury, and (ii) adaptation of a model of ligation injury that induces robust neointimal lesion formation without physical damage to the endothelium. Lesion development was assessed using standard histological techniques and this was augmented by development of quantitative optical projection tomography (OPT) to allow three-dimensional analysis of lesions. The role of ETA and ETB receptors in these models was addressed using suitable pharmacological ET receptor antagonists. Following wire-injury, selective ETB blockade (A192621; 30mg.kg-1.day-1; 35 days) increased lesion size and blood pressure without significant altering lesion composition. In contrast, selective ETA blockade (atrasentan; 10mg.kg-1.day-1; 35 days) reduced lesion size and blood pressure. Combined ETA+ETB antagonism had no effect on lesion size, despite reducing blood pressure, and reducing collagen content of the lesions. In the ligation model, neither ETA selective, ETB selective nor ETA+ETB blockade altered lesion size as assessed by standard histology but analysis by OPT indicated that ETA blockade, with or without concurrent ETB blockade, reduced lesion volume. The influence of ETB receptors expressed by ECs on lesion formation was addressed using EC-specific ETB knockout mice. Small vessel myography indicated that endothelium-dependent relaxation was unaltered in femoral arteries from these mice. In addition, no effect on lesion size or rate of development was observed in either wire- or ligation-injury models of neointima formation (although subtle effects on lesion and medial composition were apparent after intra-luminal injury). These results indicate that ETB receptor activation can moderate the detrimental actions of the ETA receptor on neointimal lesion progression, and that this role is dependent on the mode of vascular injury. Furthermore, in this setting, this beneficial action is not primarily mediated by ETB expressed by EC, suggesting that ETB in other cell types can reduce lesion development through another, unidentified mechanism. Therefore, while both ETA selective and non-selective ETA/B antagonists are currently in clinical use, in conditions where similar arterial remodelling processes occur, selective ETA receptor antagonists might be preferred.
|
4 |
Adenosine and the Coronary Vasculature in Normoxic and Post-Ischaemic HeartsZatta, Amanda J, n/a January 2004 (has links)
While previous research into the pathogenesis of ischaemic and reperfusion injuries has focussed on the cardiac myocyte, there is increasing evidence for a crucial role for coronary vascular injury in the genesis of the post-ischaemic phenotype [1-3]. Post-ischaemic vascular injury may be manifest as a transient or sustained loss of competent vessels, impairment of vascular regulatory mechanisms, and ultimately as the 'no-reflow' phenomenon (inability to sufficiently reperfuse previously ischaemic tissue despite the removal of the initial obstruction or occlusion). It is now appreciated that the earliest distinguishing feature of various forms of vascular injury (including atherosclerosis and infarction) is 'endothelial dysfunction', which is the marked reduction in endothelial-dependent relaxation due to reduced release or action of endothelial nitric oxide (NO). Importantly, vascular injury may worsen myocardial damage in vivo [4,5], significantly limiting tissue salvage and recovery. The pathogenesis of post-ischaemic vascular injury and endothelial dysfunction is incompletely understood, but has generally been considered to reflect a cardiovascular inflammatory response, neutrophils playing a key role. However, while blood-borne cells and inflammatory elements are undoubtedly involved in the 'progression' of vascular injury [6,7], accumulating evidence indicates that they are not the primary 'instigators' [8]. It should be noted that a wealth of controversial findings exists in the vascular injury literature and mechanisms involved remain unclear. Indeed, multiple mechanisms are likely to contribute to post-ischaemic vascular injury. Adenosine receptors are unique in playing a role in physical regulation of coronary function, and also in attenuating injury during and following ischaemia. While the adenosine receptor system has been extensively investigated in terms of effects on myocardial injury [9,10], little is known regarding potential effects of this receptor system on post-ischaemic coronary vascular injury. This thesis initially attempts to further our understanding of the role of adenosine in normal coronary vascular function, subsequent chapters assess the effect of ischaemia-reperfusion on vascular function, and adenosine receptor modification of vascular dysfunction in the isolated asanguinous mouse heart. Specifically, in Chapter 3 the receptor subtype and mechanisms involved in adenosine-receptor mediated coronary vasodilation were assessed in Langendorff perfused mouse and rat hearts. The study revealed that A2A adenosine receptors (A2AARs) mediate coronary dilation in the mouse vs. A2B adenosine receptors (A2BARs) in rat. Furthermore, responses in mouse involve a sensitive endothelial-dependent (NO-dependent) response and NO-independent (KATP-mediated) dilation. Interestingly, the ATP-sensitive potassium channel component predominates over NO-dependent dilation at moderate to high agonist levels. However, the high-sensitivity NO-dependent response may play an important role under physiological conditions when adenosine concentrations and the level of A2AAR activation are low. In Chapter 4 the mechanisms regulating coronary tone under basal conditions and during reactive hyperaemic responses were assessed in Langendorff perfused mouse hearts. The data support a primary role for KATP channels and NO in mediating sustained elevations in flow, irrespective of occlusion duration (5-40 s). However, KATP channels are of primary importance in mediating initial flow adjustments after brief (5-10 s) occlusions, while KATP (and NO) independent processes are increasingly important with longer (20-40 s) occlusion. Evidence is also presented for compensatory changes in KATP and/or NO mediated dilation when one pathway is blocked, and for a modest role for A2AARs in reactive hyperaemia. In Chapter 5 the impact of ischaemia-reperfusion on coronary function was examined, and the role of A1 adenosine receptor (A1AR) activation by endogenous adenosine in modifying post-ischaemic vascular function was assessed in isolated buffer perfused mouse hearts. The results demonstrate that ischaemia does modify vascular control and signficantly impairs coronary endothelial dilation in a model devoid of blood cells. Additionally, the data indicate that post-ischaemic reflow is significantly determined by A2AAR activation by endogenous adenosine, and that A1AR activation by endogenous adenosine protects against this model of vascular injury. Following from Chapter 5, the potential of A1, A2A and A3AR activation by exogenous and endogenous agonists to modulate post-ischaemic vascular dysfunction was examined in Chapter 6. Furthermore, potential mechanisms involved injury and protection were assessed by comparing effects of adenosine receptors to other 'vasoprotective' interventions, including anti-oxidant treatment, Na+/H+ exchange (NHE) inhibition, endothelin (ET) antagonism, and 2,3-butanedione monoxime (BDM). The data acquired confirm that post-ischaemic endothelial dysfunction is reduced by intrinsic A1AR activation, and also that exogenous A3AR activation potently reduces vascular injury. Protection appears unrelated to inhibition of ET or oxidant stress. However, preliminary data suggest A3AR vasoprotection may share signalling with NHE inhibition. Finally, the data reveal that coronary reflow in isolated buffer perfused hearts is not a critical determinant of cardiac injury, suggesting independent injury processes in post-ischaemic myocardium vs. vasculature. Collectively, these studies show that adenosine has a significant role in regulating coronary vascular tone and reactive hyperaemic responses via NO and KATP dependent mechanisms. Ischaemia-reperfusion modifies vascular control and induces significant endothelial dysfunction in the absence of blood, implicating neutrophil independent injury processes. Endogenous adenosine affords intrinsic vasoprotection via A1AR activation, while adenosinergic therapy via exogenous A3AR activation represents a new strategy for directly protecting against post-ischaemic vascular injury.
|
5 |
Assessing the role of Polyphenols as a vascular protectant against Drug Induced Vascular Injury.Oommen, Anson Jacob 14 June 2019 (has links)
No description available.
|
6 |
APOLIPOPROTEIN E MODULATION OF VASCULAR SMOOTH MUSCLE CELL RESPONSE TO INJURYMOORE, ZACHARY W. Q. January 2005 (has links)
No description available.
|
7 |
Ischaemic preconditioning in exercise and disease : one size fits all?Seeger, Joost January 2016 (has links)
Ischaemia reperfusion injury (IR-injury) occurs when blood supply to a certain area of the body is blocked, and is subsequently followed by reperfusion. During the period of ischaemia, tissue is damaged as a result of lack of oxygen. Rapid reperfusion is mandatory, but unfortunately causes damage in addition to the damage induced by ischaemia alone. While a prolonged period of ischaemia is harmful to the bodily tissue, short periods of ischaemia interspersed with short bouts of reperfusion have protective effects. This mechanism is called ischaemic preconditioning (IPC). In this thesis, the impact of co-morbidity and age on IR-injury and IPC are explored. Moreover, the possible role of IPC to enhance exercise performance is investigated. Finally an attempt is made to understand the interchangeable effects of IPC and exercise performance in the prevention of IR-injury. Using the brachial artery endothelial function as a surrogate marker, first the consequences of IR-injury in both young and older individuals on endothelial function were studied. It was also assessed whether IPC could prevent endothelial IR-injury. It was found that endothelial function in both groups declined, when IR-injury was not preceded with IPC. However, when IPC was applied prior to IR-injury, a protective effect was detected in young subjects, but not in older participants. In chapter 5, this study was repeated in patients with heart failure, as they are at an increased risk for IR-injury. While in both groups a significant decline in endothelial function was observed, a much larger decline was established in the heart failure group. Moreover, IPC failed to protect against endothelial dysfunction in heart failure patients after IR-injury. The third study presented in this thesis, focused on the question whether exercise performance enhancement during a 5-km time trial was comparable when IPC on the upper legs was applied immediately before the time trial versus 24 hours (24-IPC) prior to exercise. Interestingly, a significant and strong correlation was found in finish time between acute IPC and 24-IPC, suggesting comparable effects of IPC and 24-IPC on exercise performance. In a follow-up study, it was determined whether local IPC applied on the upper arm, or remote IPC applied on the legs, would lead to an improved maximum incremental arm crank exercise test in individuals with a complete spinal cord lesion. The main finding was that upper arm IPC led to an increased performance enhancement, whilst remote IPC (stimulus below the lesion) did not lead to any significant differences. These studies help to inform the best or most practical application of IPC in daily life situations. Some previous work has suggested that exercise may resemble some of the effects of IPC. More specifically, acute exercise might possess the same protective effects against ischaemia-reperfusion injury as IPC. Therefore, in young healthy individuals it was studied, whether an acute bout of endurance or interval exercise is able to protect against brachial endothelial IR-injury. It was established that interval exercise prevented endothelial dysfunction after an IR stimulus, while no protective effect of endurance exercise was found. It was concluded that interval exercise, but not endurance exercise, prevented endothelial dysfunction after an ischaemic period. In conclusion, this thesis provides further evidence for the protective effects of (remote) IPC, both on the prevention of endothelial IR-injury as well as improvement in exercise performance. However, effects may depend on the protocol and population studied.
|
8 |
The responses of endothelium to insult : does endothelial heterogeneity play a role in in vitro cell modelsMthethwa, Mashudu 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Endothelial injury and dysfunction precede the development of cardiovascular diseases. The endothelium may be regarded as the first line of defence against inflammation / obesity-induced vascular injury, therefore gaining more information on the mechanisms of injury and response to injury, as well as modulating endothelial function may be key in the prevention of cardiovascular diseases. Endothelial cells differ in structure and function, therefore endothelial heterogeneity may be relevant when investigating endothelial function and dysfunction. Understanding endothelial heterogeneity in response to pathophysiological stimuli may be of significance in the prevention of cardiovascular diseases. Oleanolic acid (OA), a plant-derived triterpenoid, has been shown to possess endothelio-protective properties; however, its role in reversing endothelial injury is poorly understood.
This study investigated endothelial heterogeneity between aortic endothelial cells (AECs) and cardiac microvascular endothelial cells (CMECs) at baseline and in response to an inflammatory insult via the cytokine, tumour necrosis factor-alpha (TNF-α). An in vitro model of endothelial injury was developed by treating AECs and CMECs with 20 ng/ml TNF-α for 24 hours. Endothelial heterogeneity was investigated by comparing intracellular nitric oxide (NO) and reactive oxygen species (ROS) production, protein expression and phosphorylation, and large-scale protein expression and regulation in AECs and CMECs. The experimental techniques included flow cytometry, western blots and proteomic analyses. An ex vivo model of endothelial injury was included to investigate vascular function in aortic rings from lean and high fat diet (HFD) rats. The role of OA in reversing TNF-α-induced injury and modulating vascular function in the ex vivo model was investigated. Although baseline NO-levels were similar between AECs and CMECs, heterogeneity was observed with regards to the NO biosynthetic pathway in terms of increased eNOS expression in CMECs. Baseline ROS levels were heterogeneous between AECs and CMECs, interestingly CMECs possessed higher anti-oxidant capacity. An in vitro model of TNF-α-induced injury was confirmed by decreased NO-levels, increased ROS-levels and necrosis, up-regulation of apoptotic proteins and activation of inflammatory pathways in AECs and CMECs. Here, heterogeneity between AECs and CMECs was also observed: endothelial activation was mediated through different proteins in AECs (CD9 molecule, galectin) and CMECs (ICAM-1 and IL-36α). Apoptosis was mediated by caspase 3 in AECs and Bid in CMECs. AECs appeared to advance to a dysfunctional state shown by up-regulation of endothelin-converting enzyme and angiotensin II-converting enzyme, while CMECs maintained an activated state. OA reversed TNF-α-induced injury through restoring NO-production, decreasing ROS-production in both AECs and CMECs, and inhibiting necrosis in AECs. In the ex vivo model of injury, aortic rings from 16-week HFD rats showed a pro-contractile response to phenylephrine-induced contraction, a response that was reversed by OA. In conclusion, we demonstrated novel findings with regards to endothelial heterogeneity between AECs and CMECs under baseline and TNF-α-treated conditions. Although reduced NO-bioavailability may be the hallmark of endothelial dysfunction, signalling pathways mediating endothelial injury may differ between cell types as was shown in this study. We demonstrated that OA possess protective properties in AECs and CMECS, an observation which was translated to the ex vivo model. / AFRIKAANSE OPSOMMING: Endoteelbesering en –disfunksie gaan die ontwikkeling van kardiovaskulêre siektes vooraf. Die endoteel word as die eerste linie van verdediging teen inflammasie / vetsug-geïnduseerde vaskulêre skade beskou; dus is die ontginning van nuwe inligting betreffende die meganismes van en respons tot besering, asook die modulering van endoteelfunksie essensieël in die voorkoming van kardiovaskulêre siektes. Endoteelselle verskil t.o.v. struktuur en funksie, en dus is endoteel-heterogeniteit relevant tydens die ondersoek van endoteelfunksie en –disfunksie. ‘n Beter begrip van endoteel-heterogeniteit in die respons tot patofisiologiese stimuli kan betekenisvol tot die voorkoming van kardiovaskulêre siektes bydra. Oleanoliese suur (OA), ‘n triterpenoïed afkomstig van plante is voorheen bewys om endoteelbeskermende eienskappe te besit; die rol van OA in die omkering van endoteelbesering is egter minder bekend. Hierdie studie het endoteel-heterogeniteit tussen aorta endoteelselle (AECs) en hart mikrovaskulêre endoteeelselle (CMECs) by basislyn en in respons tot ‘n inflammatoriese besering via die sitokien, tumor nekrose faktor-alfa (TNF-α), ondersoek. ‘n In vitro model van endoteelbesering is ontwikkel deur AECs en CMECs met 20 ng/ml TNF-α vir 24 uur te behandel. Endoteel-heterogeniteit was ondersoek deur intrasellulêre stikstofoksied (NO) en reaktiewe suurstofspesies (ROS) produksie, proteïenuitdrukking en fosforilering, en grootskaalse proteïenuitdrukking en regulering in AECs en CMECs te vergelyk. Die eksperimentele tegnieke het ingesluit: vloeisitometrie, western blots en proteomika. ‘n Ex vivo model van endoteelbesering was ook ingesluit deur die vaskulêre funksie in aortaringe van normale en hoë vet dieet-gevoerde (HFD) rotte te meet. Die rol van OA in die omkering van TNF-α-geïnduseerde besering en modulering van vaskulêre funksie was in hierdie model is ondersoek. Alhoewel basislyn NO-vlakke vergelykbaar was in AECs en CMECs, is heterogeniteit wel aangetoon m.b.t. die NO biosintese pad met verhoogde eNOS uitdrukking in die CMECs. Basislyn ROS-vlakke was verskillend in AECs en CMECs en die CMECs het hoër anti-oksidant kapasiteit getoon. ‘n In vitro model van TNF-α-geïnduseerde besering is bevestig met die waarneming van verlaagde NO-vlakke, verhoogde ROS-vlakke en nekrose, opregulering van apoptotiese proteïene en aktivering van inflammatoriese paaie in AECs en CMECs. Hier was heterogeniteit ook opmerkbaar: endoteelaktivering was deur verskillende proteïene in AECs (CD9 molekule, galektien) en CMECs (ICAM-1, IL-36α) bemiddel. Apotose was deur kaspase 3 in AECs en Bid in CMECs bemiddel. Dit het geblyk dat AECs tot ‘n staat van endoteeldisfunksie gevorder het met die opregulering van endotelien-omsettingsensiem en angiotensien II-omsettingsensiem, terwyl CMECs eerder ‘n geaktiveerde staat gehandhaaf het. OA het TNF-α-geïnduseerde besering omgekeer deur NO-produksie te herstel, ROS-produksie te onderdruk in beide AECs en CMECs, en nekrose te inhibeer in AECs. In die ex vivo model van besering, het aortaringe van 16-week HFD rotte ‘n pro-kontraktiele respons tot fenielefrien-geïnduseerde kontraksie getoon, wat deur OA omgekeer is. Ten slotte, nuwe bevindinge is waargeneem m.b.t. endoteel-heterogeniteit tussen AECs en CMECs onder basislyn en TNF-α-behandelde omstandighede. Alhoewel verlaagde NO-biobeskikbaarheid die waarmerk van endoteeldisfunksie is, het hierdie studie getoon dat seintransduksiepaaie wat endoteelbesering medieer verskillend is tussen seltipes. Die studie het verder ook gedemonstreer dat OA beskermende eienskappe toon in AECs en CMECs, ‘n waarneming wat ook in die ex vivo model aangetoon kon word.
|
9 |
Mecanismos celulares que influenciam a sinalização por receptores 1-adrenérgicos na carótida contra-lateral à lesão por cateter balão / Cellular mechanisms influence 1-adrenoceptors signaling in contralateral carotid after balloon catheter injury.Pereira, Aline Carvalho 05 October 2009 (has links)
PEREIRA, A.C. Mecanismos celulares que influenciam a sinalização por 1-adrenoceptores na carótida contra-lateral à lesão por cateter balão. 2009. 127 f. Tese (Doutorado) - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2009. Em artérias carótidas de ratos, a lesão provocada pela angioplastia por cateter balão resulta em resposta neurocompensatória na carótida contra-lateral à lesão, com aumento da inervação contendo substância P e CGRP (peptídeo relacionado ao gene da calcitonina), além de alteração de reatividade a agonistas vasoconstritores. O objetivo deste trabalho foi estudar os mecanismos relacionados à alteração de reatividade à fenilefrina (Phe) na carótida contra-lateral à lesão, 1, 2, 4 e 15 dias após a lesão. A análise histológica mostrou que a carótida contra-lateral à lesão é semelhante ao controle. Na artéria ipsi-lateral a camada endotelial estava ausente e, aos 15 dias após a lesão observou-se a presença da neoíntima. Curvas concentração-resposta para Phe (contração) foram realizadas em anéis isolados de carótidas contra-laterais e controles, 1, 2, 4 e 15 dias após a lesão. No quarto dia após a lesão, observou-se aumento no efeito máximo (Emax) da Phe na artéria contralateral em relação ao controle. Para avaliar se o aumento no Emax da Phe estava relacionado à mobilização de cálcio induzida por esse agonista, foi usada solução de Krebs sem cálcio, contendo ou não EGTA e curvas concentração resposta para CaCl2. Observamos que a mobilização de cálcio intracelular induzido pela Phe na contra-lateral não estava alterada em relação ao controle, mas o influxo de cálcio estava reduzido. Este resultado foi confirmado em usando anéis de carótida marcados com Fluo-3AM em microscópio confocal. Na presença de inibidores específicos, observou-se que a isoforma endotelial da enzima óxido nítrico sintase, canais para potássio dependentes de cálcio, prostanóides derivados da COX-2, ânion superóxido e junções do tipo Gap estão envolvidos na redução do influxo de cálcio na contra-lateral. No entanto, não há participação de óxido nítrico, guanilato ciclase ou da Ca-ATPase do retículo. Ânion superóxido, COX-2 e junções do tipo Gap também participam do aumento de Emax da Phe na carótida contra-lateral à lesão. Os resultados sugerem ainda que ânions superóxido promovem aumento da atividade de Rho-kinase na artéria contra-lateral em relação ao controle, conforme observado em curvas de relaxamento com Y-27632 (inibidor de Rho-quinase), após pré-contração com Phe. A potência para Phe e para CaCl2 na contra-lateral foi semelhante ao controle, assim como o relaxamento induzido pela acetilcolina e a contração desencadeada pelo KCl. Os resultados obtidos neste trabalho indicam que a resposta neurocompensatória ao cateter balão resulta em alterações na sinalização celular que interferem na reatividade à Phe na carótida contra-lateral à lesão. Estas alterações são dependentes do endotélio, desencadeadas, provavelmente, por um estresse oxidativo causado por ânions superóxido e sugerem a existência de mecanismos compensatórios para manter o tônus vascular. / In rat carotid arteries, balloon catheter injury results in neurocompensatory response in contralateral carotid, leading to increased levels of substance P and CGRP (calcitonin gene-related peptide), beside alterations in reactiveness to vasoconstrictor agonists. The aim of this work was to study the mechanisms involved in alterations in phenylephrine (Phe) responsiveness in contralateral carotid, 1, 2, 4 and 15 days after injury. Histological analysis showed that contralateral carotid was similar to control. Endothelium was absent in ipsilateral arteries, but 15 days after lesion it was observed the neointima. Concentration-response curves to Phe (contraction) were performed in isolated carotid rings, control and contralateral, 1, 2, 4 and 15 days after lesion. In the fourth day after lesion, it was observed increase in maximum effect (Emax) to Phe in contralateral compared to control arteries. In order to verify if the increase in Emax to Phe was related to calcium mobilization by this agonist, it was used free-calcium Krebs solution containing or not EGTA, and concentration-response curves to CaCl2. It was observed that intracellular calcium mobilization by Phe was similar to control, but calcium influx was reduced in contralateral. Confocal microscopy, using carotid rings loaded with Fluo-3AM, was also utilized to corroborate this result. In presence of specific inhibitors, it was observed that endothelial isoform of nitric oxide synthase, calcium-activated potassium channels, prostanoids from COX-2, superoxide anions and Gap-junctions are involved on reduction of Phe-induced calcium influx. However, neither nitric oxide, guanylate cyclase nor sarcoendoplasmic reticulum Ca-ATPase participate in this response. Superoxide anions, COX-2 and Gap-junctions also play a role on increased Emax to Phe in contralateral carotid. Futhermore, superoxide anions promote increase in Rho-kinase activity in contralateral carotid compared to control, as it was observed in relaxation curves with Y-27632 (Rho-kinase inhibitor), after Phe pre-contraction. Phe and CaCl2 potency in contralateral were similar to control, like acetylcholine relaxation and KCl-induced contraction. Results obtained in this work indicate that the neurocompensatory response to balloon catheter injury leads to alterations in the signaling pathway downstream alpha1-adrenoceptor activation in contralateral carotid. These alterations are endothelium dependent and, probably, triggered by oxidative stress due to superoxide anions. Taken together, data suggest the existence of compensatory mechanisms to maintain the vascular tonus.
|
10 |
Mecanismos celulares que influenciam a sinalização por receptores 1-adrenérgicos na carótida contra-lateral à lesão por cateter balão / Cellular mechanisms influence 1-adrenoceptors signaling in contralateral carotid after balloon catheter injury.Aline Carvalho Pereira 05 October 2009 (has links)
PEREIRA, A.C. Mecanismos celulares que influenciam a sinalização por 1-adrenoceptores na carótida contra-lateral à lesão por cateter balão. 2009. 127 f. Tese (Doutorado) - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2009. Em artérias carótidas de ratos, a lesão provocada pela angioplastia por cateter balão resulta em resposta neurocompensatória na carótida contra-lateral à lesão, com aumento da inervação contendo substância P e CGRP (peptídeo relacionado ao gene da calcitonina), além de alteração de reatividade a agonistas vasoconstritores. O objetivo deste trabalho foi estudar os mecanismos relacionados à alteração de reatividade à fenilefrina (Phe) na carótida contra-lateral à lesão, 1, 2, 4 e 15 dias após a lesão. A análise histológica mostrou que a carótida contra-lateral à lesão é semelhante ao controle. Na artéria ipsi-lateral a camada endotelial estava ausente e, aos 15 dias após a lesão observou-se a presença da neoíntima. Curvas concentração-resposta para Phe (contração) foram realizadas em anéis isolados de carótidas contra-laterais e controles, 1, 2, 4 e 15 dias após a lesão. No quarto dia após a lesão, observou-se aumento no efeito máximo (Emax) da Phe na artéria contralateral em relação ao controle. Para avaliar se o aumento no Emax da Phe estava relacionado à mobilização de cálcio induzida por esse agonista, foi usada solução de Krebs sem cálcio, contendo ou não EGTA e curvas concentração resposta para CaCl2. Observamos que a mobilização de cálcio intracelular induzido pela Phe na contra-lateral não estava alterada em relação ao controle, mas o influxo de cálcio estava reduzido. Este resultado foi confirmado em usando anéis de carótida marcados com Fluo-3AM em microscópio confocal. Na presença de inibidores específicos, observou-se que a isoforma endotelial da enzima óxido nítrico sintase, canais para potássio dependentes de cálcio, prostanóides derivados da COX-2, ânion superóxido e junções do tipo Gap estão envolvidos na redução do influxo de cálcio na contra-lateral. No entanto, não há participação de óxido nítrico, guanilato ciclase ou da Ca-ATPase do retículo. Ânion superóxido, COX-2 e junções do tipo Gap também participam do aumento de Emax da Phe na carótida contra-lateral à lesão. Os resultados sugerem ainda que ânions superóxido promovem aumento da atividade de Rho-kinase na artéria contra-lateral em relação ao controle, conforme observado em curvas de relaxamento com Y-27632 (inibidor de Rho-quinase), após pré-contração com Phe. A potência para Phe e para CaCl2 na contra-lateral foi semelhante ao controle, assim como o relaxamento induzido pela acetilcolina e a contração desencadeada pelo KCl. Os resultados obtidos neste trabalho indicam que a resposta neurocompensatória ao cateter balão resulta em alterações na sinalização celular que interferem na reatividade à Phe na carótida contra-lateral à lesão. Estas alterações são dependentes do endotélio, desencadeadas, provavelmente, por um estresse oxidativo causado por ânions superóxido e sugerem a existência de mecanismos compensatórios para manter o tônus vascular. / In rat carotid arteries, balloon catheter injury results in neurocompensatory response in contralateral carotid, leading to increased levels of substance P and CGRP (calcitonin gene-related peptide), beside alterations in reactiveness to vasoconstrictor agonists. The aim of this work was to study the mechanisms involved in alterations in phenylephrine (Phe) responsiveness in contralateral carotid, 1, 2, 4 and 15 days after injury. Histological analysis showed that contralateral carotid was similar to control. Endothelium was absent in ipsilateral arteries, but 15 days after lesion it was observed the neointima. Concentration-response curves to Phe (contraction) were performed in isolated carotid rings, control and contralateral, 1, 2, 4 and 15 days after lesion. In the fourth day after lesion, it was observed increase in maximum effect (Emax) to Phe in contralateral compared to control arteries. In order to verify if the increase in Emax to Phe was related to calcium mobilization by this agonist, it was used free-calcium Krebs solution containing or not EGTA, and concentration-response curves to CaCl2. It was observed that intracellular calcium mobilization by Phe was similar to control, but calcium influx was reduced in contralateral. Confocal microscopy, using carotid rings loaded with Fluo-3AM, was also utilized to corroborate this result. In presence of specific inhibitors, it was observed that endothelial isoform of nitric oxide synthase, calcium-activated potassium channels, prostanoids from COX-2, superoxide anions and Gap-junctions are involved on reduction of Phe-induced calcium influx. However, neither nitric oxide, guanylate cyclase nor sarcoendoplasmic reticulum Ca-ATPase participate in this response. Superoxide anions, COX-2 and Gap-junctions also play a role on increased Emax to Phe in contralateral carotid. Futhermore, superoxide anions promote increase in Rho-kinase activity in contralateral carotid compared to control, as it was observed in relaxation curves with Y-27632 (Rho-kinase inhibitor), after Phe pre-contraction. Phe and CaCl2 potency in contralateral were similar to control, like acetylcholine relaxation and KCl-induced contraction. Results obtained in this work indicate that the neurocompensatory response to balloon catheter injury leads to alterations in the signaling pathway downstream alpha1-adrenoceptor activation in contralateral carotid. These alterations are endothelium dependent and, probably, triggered by oxidative stress due to superoxide anions. Taken together, data suggest the existence of compensatory mechanisms to maintain the vascular tonus.
|
Page generated in 0.07 seconds