• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 18
  • 17
  • 2
  • 2
  • 1
  • Tagged with
  • 65
  • 65
  • 22
  • 22
  • 22
  • 17
  • 12
  • 11
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Homeobox A4 Suppresses Vascular Remodeling as a Novel Regulator of YAP/TEAD Transcriptional Activity / ホメオボックスA4はYAP/TEAD転写活性の新規制御因子として、血管リモデリングを抑制する

Kimura, Masahiro 25 May 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22641号 / 医博第4624号 / 新制||医||1044(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 山下 潤, 教授 湊谷 謙司, 教授 江藤 浩之 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
22

Hes1 and Hes5 regulate vascular remodeling and arterial specification of endothelial cells in brain vascular development / Hes1遺伝子とHes5遺伝子は脳血管発生において血管リモデリングと動脈内皮細胞への運命決定を制御する

Kitagawa, Masashi 26 November 2018 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(医学) / 乙第13213号 / 論医博第2163号 / 京都大学大学院医学研究科脳統御医科学系専攻 / (主査)教授 山下 潤, 教授 髙橋 良輔, 教授 木村 剛 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
23

Calcium-Binding Protein S100A4 Is Upregulated in Carotid Atherosclerotic Plaques and Contributes to Expansive Remodeling / 頚動脈プラークにおいてS100A4発現が亢進し、陽性リモデリングと関連する

Nagata, Manabu 24 November 2022 (has links)
京都大学 / 新制・論文博士 / 博士(医学) / 乙第13515号 / 論医博第2265号 / 新制||医||1061(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 湊谷 謙司, 教授 石見 拓, 教授 江木 盛時 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
24

TELOMERASE REVERSE TRANSCRIPTASE IN ATHEROSCLEROSIS

Qing, Hua 01 January 2017 (has links)
Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase and the limiting factor for the enzyme activity. The expression of TERT and telomerase activity is increased in atherosclerotic plaques. However, the role of TERT dysregulation during atherosclerosis formation remains unknown. The work herein first identified a multi-tiered regulation of TERT expression in smooth muscle cells (SMC) through histone deacetylase (HDAC) inhibition. HDAC inhibition induces TERT transcription and promoter activation. At the protein level in contrast, HDAC inhibition decreases TERT protein abundance through enhanced degradation, which decreases telomerase activity and induces senescence. Furthermore, during vascular remodeling in vivo, TERT protein expression in the neointima is prevented by HDAC inhibition. These data illustrate a differential regulation of TERT transcription and protein stability by HDAC inhibition. TERT is highly expressed in replicating SMC of atherosclerotic and neointimal lesions. Using a model of guidewire-induced arterial injury, neointima formation was reduced in TERT-deficient mice. Studies in SMC isolated from TERT-deficient and TERT overexpressing mice with normal telomere length established that TERT is necessary and sufficient for cell proliferation. TERT deficiency did not induce a senescent phenotype but resulted in G1 arrest albeit hyperphosphorylation of the retinoblastoma protein. This proliferative arrest was associated with stable silencing of the E2F1-dependent S-phase gene expression program which could not be reversed by ectopic overexpression of E2F1. Chromatin immunoprecipitation and accessibility assays revealed that TERT was recruited to E2F1 target sites to increase chromatin accessibility for E2F1 by facilitating the acquisition of permissive histone modifications. These data indicate a mitogenic effect of TERT on SMC growth and neointima formation through epigenetic regulation of proliferative gene expression. Furthermore, TERT expression is induced in activated macrophages during experimental and human atherosclerosis formation. To investigate the role for TERT in lesional macrophages and the subsequent effect on atherosclerosis formation, TERT-deficient mice were crossbred with LDL-receptor-deficient (LDLr-/-) mice to generate first generation G1TERT-/-LDLr-/- offsprings, which were then further intercrossed to obtain third generation G3TERT-/-LDLr-/- mice. G1TERT-/-LDLr-/- mice revealed no telomere shortening while severe telomere attrition was evident in G3TERT-/-LDLr-/- mice. When fed an atherogenic diet, G1TERT-/-LDLr-/- and G3TERT-/-LDLr-/- mice were both protected from atherosclerosis formation compared to their wild-type controls, indicating that genetic TERT-deletion prevents atherosclerosis, and formation of the disease is not affected by telomere attrition. Similarly, atherosclerosis development was decreased in chimeric LDLr-/- mice with TERT deletion in hematopoietic stem cells after bone marrow transplantation. TERT deficiency reduced macrophage accumulation in atherosclerotic lesions and altered chemokine expression, including CXC1/2/3, CCL3, CCL5, CCL21, CCR7, IL-6, and IL-1α. In isolated macrophages, gene ontology (GO) enrichment analysis of silenced inflammatory genes indicated that TERT positively regulates signal transducer and activator of transcription (STAT) cascade, which was confirmed by the decreased tyrosine phosphorylation of STAT3 protein resulting from TERT deletion. These findings indicate genetic TERT deficiency decreases atherosclerosis formation by silencing inflammatory chemokine transcription through inactivation of the STAT3 signaling pathway in activated macrophages. In conclusion, the dysregulation of TERT expression within atherosclerotic plaques plays a causative role for vascular remodeling, including injury-induced neointima formation and hypercholesterolemia-induced atherosclerosis, through inducing SMC proliferation and a pro-inflammatory phenotype in infiltrating macrophages. These findings unveil a mechanism of TERT exacerbating the pathological vascular remodeling, which may provide a novel therapeutic target to combating vascular diseases.
25

MIF/CD74 : une nouvelle cible thérapeutique pour l’Hypertension Artérielle Pulmonaire (HTAP) / MIF/CD74 signaling pathway : a novel treatment target in Pulmonary Arterial Hypertension (PAH)

Le Hiress, Morane 04 September 2015 (has links)
L’hypertension pulmonaire (HP) est définie par une élévation de la pression artérielle pulmonaire moyenne (PAPm) au-delà de 25 mm de mercure (Hg) au repos en raison de l’augmentation progressive et soutenue des résistances vasculaires pulmonaires, menant à l'insuffisance cardiaque droite. La dysfonction endothéliale pulmonaire associée à l'HTAP est maintenant considérée comme un mécanisme pathogénique clé qui pourrait être préjudiciable à la fois pour la susceptibilité et le développement du remodelage vasculaire pulmonaire. Au niveau des cellules endothéliales (CE), la fixation du facteur inhibiteur de la migration des macrophages (MIF), un des plus anciens médiateurs immunologiques connus, sur le CD74 va initier une cascade de signalisation intracellulaire clef pour la prolifération, la survie cellulaire et la production de différents facteurs inflammatoires. C’est pourquoi, ces travaux de doctorat ont visés à : 1) Etudier l’importance de la voie MIF/CD74 dans l'acquisition/maintien d’un phénotype pro-inflammatoire des CE pulmonaires dans l'HTAP ; 2) Tester l’efficacité de nouveaux antagonistes de MIF, synthétisés et brevetés par la société MIFCARE, contre ce phénotype endothélial et le développement d’HP expérimentales.Nos données mettent en lumière le rôle critique de la voie MIF/CD74 pour le phénotype aberrant des CE pulmonaires HTAP et soulignent son importance comme nouvelle cible thérapeutique prometteuse pour lutter contre le remodelage vasculaire pulmonaire. Cette meilleure compréhension du rôle de la voie MIF/CD74 dans le phénotype endothélial aberrant, nous a permis l’identification d’une nouvelle molécule à forte affinité, administrable par voie orale, capable de ralentir la progression d’HP expérimentales (brevet européen en soumission). Cependant, des études plus poussées, en cours de réalisation, sont encore nécessaires avant de pouvoir transférer ces connaissances vers une utilisation clinique de ces nouveaux candidats « médicaments ». / Pulmonary arterial hypertension (PAH) is a severe progressive cardiopulmonary disorder characterized by vascular proliferation and remodeling of the small pulmonary arteries. These can lead to a progressive increase in pulmonary vascular resistance and ultimately to right ventricular failure and death. Pulmonary endothelial dysfunction and pro-inflammatory phenotype associated with PAH are now considered as a key pathogenic mechanism that could be detrimental to both the susceptibility and development of the pulmonary vascular remodeling.In pulmonary endothelial cells (EC), the binding of the immune mediator MIF (Macrophage Migration Inhibitory Factor), to its receptor CD74 initiates an intracellular signaling cascade leading to cell proliferation, cell survival and the secretion of various inflammatory mediators. Therefore, the present work seeks to: (1) Determine the importance of the MIF/CD74 signaling pathway in the acquisition of an abnormal pro-inflammatory EC phenotype in PAH; (2) Test the efficacies of MIF inhibitors, synthesized and patented by MIFCARE, on this abnormal pro-inflammatory EC phenotype and on the development of experimental pulmonary hypertension (PH).Our data highlight the critical role of the MIF/CD74 axis in the endothelial dysfunction and pro-inflammatory phenotype of pulmonary EC in PAH. In addition, our data emphasize its importance as a promising new therapeutic target to prevent the pulmonary vascular remodeling associated to this disorder. Furthermore, we were successful in identifying an agent from a novel class of MIF antagonists optimized for in vivo use that have the ability to partially reverse established PH in rats and to partially inhibit the pro-inflammatory EC phenotype observed in PAH.Collectively, we demonstrated the importance of the MIF/CD74 axis and that its inhibition with MIF antagonist agents could represent a promising strategy for the treatment of PAH (under patent). However, further studies are still needed before transferring this knowledge to clinical use of these new candidates.
26

Relação entre biomarcadores inflamatórios, de adesão celular, de estresse oxidativo, de lesão endotelial, remodelamento tecidual e vascular e os diferentes estágios da doença venosa crônica primária (classes clínicas CEAP C0a, C2, C3, C4) / Relationship between biomarkers of inflammation, cell adhesion, oxidative stress, endothelial cell damage, vascular and tissue remodeling and the different stages of primary chronic venous disease (CEAP clinical classes C0a, C2, C3, C4)

Maria das Graças Coelho de Souza 20 August 2013 (has links)
A doença venosa crônica (DVC) é uma desordem complexa que compreende sinais e sintomas que variam das telangiectasias às úlceras ativas. A DVC é classificada de acordo com aspectos clínicos, etiológicos, anatômicos e fisiopatológicos (CEAP) em sete classes variando de C0 à C6. A principal causa da DVC é a hipertensão venosa que altera o fluxo venoso e, consequentemente, a força de cisalhamento que induz alterações fenotípicas nas células endoteliais que passam a expressar mediadores pró-inflamatórios e pró-trombóticos, que levam à adesão de leucócitos, ao aumento do estresse oxidativo, da permeabilidade vascular e do dano endotelial e ao remodelamento tecidual e vascular.Em virtude dos inúmeros mecanismos e da diversidade de moléculas envolvidas na patogênese e progressão da DVC, é essencial conhecer a interação entre elas e também saber quais são as moléculas (biomarcadores) que se correlacionam positivamente ou negativamente com a gravidade da doença. Foram avaliados os níveis de Interleucina-6 (IL-6), sL-selectina, sE-selectina, sP-selectina, molécula de adesão intercelular-1solúvel (sICAM-1), molécula de adesão das células vasculares-1 solúvel (sVCAM-1), ativador tecidual do plasminogênio (tPA), atividade do inibidor do ativador do plasminogênio-1 (PAI-1), trombomodulina solúvel (sTM), fator de von Willebrand (vWF), metaloproteinase de matriz (MMP)-2, MMP-3, MMP-9, inibidor tecidual das MMPs -1 (TIMP-1), angiopoietina-1 e -2, sTie-2 e s-Endoglina e fator de crescimento do endotélio vascular (VEGF) no sangue coletado da veia braquial de 173 mulheres com DVC primária divididas em grupos C2, C3, C4 e C4 menopausadas (C4m) e de 18 voluntárias saudáveis (grupo C0a). Foram também analisados os níveis urinários de ent-prostaglandina F2α nesses grupos. Não foram encontradas diferenças estatisticamente significativas com relação às concentrações sanguíneas e urinárias de sE-selectina, sP-selectina, sICAM-1, atividade de PAI-1, MMP-3, razão TIMP-1/MMP-3, angiopoietin-2, razão angiopoietina-1/angiopoietina-2, s-Endoglina e ent-prostaglandina F2α entre os grupos estudados, possivelmente devido à alta variabilidade na concentração desses biomarcadores entre as participantes do mesmo grupo. Entretanto, as concentrações sanguíneas de IL-6 sL-selectina, sVCAM-1, tPA, vWF, sTM, MMP2, MMP-9, TIMP-1, razão TIMP-1/MMP-2, razão TIMP-1/MMP-9, angiopoietina-1 e VEGF foram estatisticamente diferentes entre os grupos. Não foi identificado nenhum biomarcador que se correlacionasse diretamente ou inversamente com a progressão da DVC, provavelmente devido à diversidade de fatores envolvidos e à complexa interação entre eles durante o curso da doença. / Chronic Venous Disease (CVD) is a complex disorder, which encompasses signs and symptoms that vary from telangiectasias to active ulcers. The CVD is classified according Clinical, Etiologic, Anatomical and Pathophysiological (CEAP) aspects into seven classes varying from C0 to C6. The main cause of CVD is venous hypertension, which alters venous flow and consequently, shear stress. Abnormal shear stress induces phenotypic changes in endothelial cells that start to express pro-inflammatory and pro-thrombotic mediators that lead to leukocyte adhesion, oxidative stress, increased vascular permeability and endothelial cell damage and tissue and vascular remodeling. Due to several mechanisms and the diversity of molecules involved in the pathogenesis and progression of CVD, is essential to know the interplay between them and which are the molecules (biomarkers) that correlate positively and negatively with the severity of the disease. We investigated the levels of interleukin-6 (IL-6), sL-selectin, sE-selectin, sP-selectin, soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) activity, soluble thrombomodulin (sTM), von Willebrand factor (vWf), matrix metalloproteinase (MMP)-2, MMP-3, MMP-9, tissue inhibitor of metaloproteinases-1 (TIMP-1), angiopoietin-1 and -2, sTie-2, s-Endoglin, vascular endothelial growth factor (VEGF) in the blood taken from the brachial vein of 173 patients with primary CVD divided into C2, C3, C4 and menopaused C4 (C4m) groups and 18 healthy volunteers (C0a group).We also investigated the urinary levels of ent-prostaglandin F2α in these groups. There was no statistically significant difference between groups with respect to blood or urinary levels of sE-selectin, sP-selectin, sICAM-1, PAI-1 activity, MMP-3, TIMP-1/MMP-3 ratio, angiopoietin-2, angiopoietin-1/angiopoietin-2 ratio, s-Endoglin and ent-prostaglandin F2α, likely due to the high variability of these biomarkers concentration among participants within the same group. However, blood levels of IL-6, sL-selectin, sVCAM-1, tPA, vWF, sTM, MMP-2, MMP-9, TIMP-1, TIMP-1/MMP-2 ratio, TIMP-1/MMP-9 ratio, angiopoietin-1 and VEGF were statistically different between groups. It was not identified any biomarker that correlated directly or inversely with the progression of CVD, probably due to the diversity of factors involved and the complex interplay between them in the course of the disease.
27

Vascular Influence During Patterning and Differentiation of the Gonad

Cool, Jonah January 2011 (has links)
<p>The gonad is a unique primordial organ that retains the ability to adopt one of two morphological fates through much of mammalian embryonic development. Previous work in our lab found that dimorphic vascular remodeling was one of the earliest steps during sex-specific morphogenesis. In particular, vessels in XY gonads display highly ordered behavior that coincides with testis cord formation. It was unknown how the vasculature may influence testis cord morphogenesis and, if so, how this was mechanistically related to sex determination. The work in this thesis addresses a single over-arching hypothesis: Male-specific vascular remodeling is required for testis morphogenesis and orchestrates differentiation of the XY gonad. </p><p>To address this question we have modified and developed techniques that allow us to isolate aspects of vascular behavior, gene expression, and endothelial influence on surrounding cells. In particular, the application of live imaging was instrumental to understanding the behavior of various gonadal cell-types in relation to remodeling vessels. It is difficult to grasp the complexity of an organ without understanding the dynamics of its constituents. A critical aim of my work was to identify specific inhibitors of the vasculature that do not affect the early stages of sex determination. Combining inhibitors, live imaging, cell sorting, qRT-PCR, mouse models, and whole organ culture has led to a far richer understanding of how the vasculature behaves and the cell-types that mediate its influence on organ morphogenesis. The beauty of our system is that we do not have to settle for a snapshot of the fate of cells in vivo, but can document their journeys and their acquaintances along the way. </p><p>Vascular migration is required for testis cord morphogenesis. Specific inhibitors revealed that in the absence of vessels, testis cords do not form. The work below shows that vessels establish a feedback loop with mesenchymal cells that results in both endothelial migration and subsequent mesenchymal proliferation. Interstitial control of testis morphogenesis is a new model within the field. The mechanisms regulating this process include Vegf mediated vascular remodeling, Pdgf induced proliferation, and Wnt repression of coordinated endothelial-mesenchymal dynamics. Our work also suggests that vascular patterning underlies testis patterning and, again, is mediated by signals within the interstitial space not within testis cords themselves. </p><p>A final aspect of my work has been focused on how vessels continue to influence morphology of the testis and the fate of surrounding cells. Jennifer Brennan, a graduate student in our lab, previously showed that loss of Pdgfr&#945; antagonizes cord formation and development of male-specific lineages. The mechanisms and cell-types related to this defect were not clear. I began to reanalyze Pdgfr&#945; mutants after finding remarkable similarity to gonads after vascular inhibition. This work is providing data suggesting that vessels are not simply responsible for testis morphology but also for the fate of specialized cells within the testis. On the whole, this thesis describes specific roles for endothelial cells during gonad development and mechanisms by which they are regulated.</p> / Dissertation
28

Chronic monitoring of cortical hemodynamics after ischemic stroke using funcional optical imaging techniques

Schrandt, Christian John 11 August 2015 (has links)
The roles of the vascular architecture and blood flow in response to neurovascular diseases are important in predicting physiological outcomes. Observing these parameters chronically with optical imaging techniques provides insight into the neurovascular recovery process. We develop and deploy optical imaging systems for monitoring the progression of vascular structure, perfusion, and functional blood response after ischemic stroke in a chronic rodent model to observe vascular dynamics of the cortex under normal and diseased pathologies. Specifically, we monitor the progression of the vascular structure and cerebral blood flow (CBF) over a chronic period in the rodent cortex after photo-thrombotic occlusion. Multi-Exposure Speckle Imaging (MESI) provides surface measurements of microvascular flow dynamics while Two-Photon Fluorescence Microscopy offers direct visualization of the microvascular structure. We observe the occurrence of vascular reorientation in the sub-surface microvascular structure over a 35 day post-occlusion period. We also correlate MESI flow estimates in the parenchyma with sub-surface microvascular volume fractions from two-photon microscopy to assess how vascular density influences the surface-integrated MESI measurements. Next, we develop and validate a MESI technique for measuring absolute changes of the functional blood flow response to forepaw stimulation in rodents, termed FA MESI. The optimal camera exposures for capturing the CBF response to forepaw stimulation are extracted from a training set of animal data and the feasibility of the technique is demonstrated in a testing animal set by comparing functional response results between new and existing techniques. We then deploy this system in a chronic study monitoring the progression of hemodynamic parameters after ischemic stroke within the functionally responding area of the cortex. The progression of the regional CBF perfusion and absolute changes in the magnitude of the functional blood flow response are monitored chronically after photo-thrombotic occlusion. We compare the differences between absolute and relative measurements of the functional blood flow responses, and validate FA MESI by comparing baseline measurements to 15-exposure MESI over the sampled flow distributions. We demonstrate the differences measured between the functional outcomes and the regional CBF perfusion over a three week post-occlusion time period. / text
29

Lymphocyte Contributions to Local and Systemic Cardiovascular Regulation in Mouse Pregnancy

Burke, Suzanne Diana 02 September 2010 (has links)
Healthy term pregnancy requires precisely timed coordination of multiple systems, including reproductive, neuroendocrine, immune and cardiovascular. Dynamic maternal alterations occur systemically as well as locally within the reproductive tract. Systemic cardiovascular changes during gestation are relatively conserved in mammals, permitting comparison. These physiological changes are relatively acute and reversible, in contrast to the pathological changes seen during cardiovascular disease development. Gestational hypertensive disorders, such as preeclampsia, are the leading causes of maternal and fetal morbidity and mortality. The pathogenesis of preeclampsia is not fully elucidated, but perturbation of the immune system is a fundamental component. The angiogenic and vascular properties of uterine NK lymphocytes have been well studied in mice and women, but their relationships to gestational blood pressure regulation and cardiovascular adaptations have not been addressed. In non-pregnant women and mice, T cells, but not B cells, have been found to alter cardiovascular functioning. NK cells in humans also possess these capabilities, but no functional studies have been completed. The aim of this thesis was to define the role of NK and T lymphocytes in cardiovascular adaptations during mouse gestation. Using chronic radiotelemetry, histology, post-mortem and other techniques, female inbred mice of differing genotypes that lack specific lymphocyte subsets were compared before and across gestation. In normal, immune competent mice, a five-phase gestational blood pressure profile was found. This dynamic profile corresponded to stages of placental development. In mice with a compound deficit in arterial modification and lymphocytes, no gestational hypertension was observed. To elevate the maternal challenge of pregnancy, studies of pregnant, autoimmune Type 1 Diabetic mice were conducted. Impaired spiral artery remodeling, dysfunctional lymphocytes and growth-restricted fetuses were identified. From mid-gestation, diabetic pregnant mice were hypotensive and bradycardic and showed signs of pre-renal failure (proteinuria and electrolyte imbalances). In pregnant mice lacking T cells, tachycardia was observed despite otherwise normal gestational outcomes. In pregnant mice lacking T cells with impaired NK cells, blood pressure was blunted and tachycardia was observed. These findings support the conclusion that impaired spiral artery remodeling is insufficient to cause gestational hypertension in mice. The data further identify a role for T and NK cells in cardiac function during gestation. / Thesis (Ph.D, Anatomy & Cell Biology) -- Queen's University, 2010-09-01 20:56:15.648
30

Hemodynamic changes in intracranial aneurysms due to stent-induced vascular remodeling /

Santos, Gabriel Bertacco dos. January 2018 (has links)
Orientador: José Luiz Gasche / Resumo: Originalmente, stents foram projetados para agir como barreiras mecânicas, impedindo a herniação de coils para a artéria-mãe. Recentemente, estudos mostraram que a atual geração de stents intracranianos auto-expansíveis altera a geometria local das artérias: um fenômeno com efeitos hemodinâmicos em parte incompreendidos. Nós realizamos simulações numéricas para avaliar a influência da remodelagem arterial induzida por stent sobre a hemodinâmica em aneurismas intracranianos. As simulações foram realizadas utilizando o software open-source OpenFOAM. O sangue foi modelado como fluido Newtoniano incompressível e as paredes arteriais foram consideradas rígidas. Para quantificar as alterações hemodinâmicas, avaliamos os parâmetros wall shear stress, WSS, e oscillatory shear index, OSI. Quatro geometrias reais de aneurismas intracranianos em bifurcações foram utilizadas. Em um aneurisma na bifurcação da artéria comunicante anterior (ACoA), um stent foi implantando, levando ao endireitamento das artérias que o receberam. Após o procedimento, os níveis de WSS e OSI aumentaram aproximadamente 60% e 25%, respectivamente. Em dois aneurismas em bifurcações da artéria cerebral média (MCA), dois stents foram implantados em uma configuração em “Y”, resultando em um endireitamento de ambas as artérias-filhas. O WSS máximo na superfície do aneurisma aumentou aproximadamente 5% em um dos casos e 22% no outro. Em outro aneurisma em uma bifurcação da MCA, um stent foi implantado, resultando no en... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Stents were first designed to act as mechanical barriers, preventing coil herniation into the parent artery. The current generation of self-expanding intracranial stents has recently been shown to change the local vascular geometry, a phenomenon with unclear hemodynamic effects. We carried out numerical simulations to assess the role of stent-induced vascular remodeling in modifying intraaneurysmal hemodynamics. Simulations were performed using the open-source software OpenFOAM. Blood was assumed to behave as an incompressible Newtonian fluid; vessel walls were assumed to be rigid. Wall shear stress, WSS, and oscillatory shear index, OSI, were evaluated to quantify the hemodynamic changes in the aneurysm sac. Four pre- and post-stent patient-specific geometries of intracranial bifurcation aneurysm were used. In one aneurysm at the anterior communicating artery (ACoA) bifurcation, a single stent was deployed, resulting in straightening of the host vessels. After stenting, WSS and OSI increased by approximately 60% and 25%, respectively. In two aneurysms at middle cerebral artery (MCA) bifurcations, two stents in a “Y” configuration were deployed, resulting in straightening of both daughter arteries. The maximum WSS on the aneurysm surface increased by approximately 5% in one case and 22% in the other. In another aneurysm at a bifurcation of the MCA, a single stent was deployed, resulting in straightening of the host vessels. After stenting, WSS and OSI reduced by approximately... (Complete abstract click electronic access below) / Mestre

Page generated in 0.0953 seconds