• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 1
  • Tagged with
  • 14
  • 14
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Late Holocene palaeoecology and environmental archaeology of six lowland lakes and bogs in North Shropshire

Twigger, S. N. January 1988 (has links)
No description available.
2

Vegetation Changes in a Large Estuarine Wetland Subsequent to Construction of Floodgates: Hexham Swamp in the Lower Hunter Valley, New South Wales

Winning, Geoffrey Bruce, res.cand@acu.edu.au January 2006 (has links)
Floodgates were constructed in 1971 on the main creek draining Hexham Swamp, a large wetland on the floodplain of the lower Hunter River, New South Wales. Substantial changes in vegetation have occurred in Hexham Swamp subsequent to the construction of the floodgates. Previous areas of mangroves and saltmarsh have been reduced (180ha to 11ha, and 681ha to 58ha, respectively), and Phragmites australis has expanded (170ha to 1005ha). Much of the mangrove loss (ca. 130ha) was a result of clearing, and the remainder has gradually died off. The factors contributing to the dieback are likely to be a combination of drying of the soil, root competition and, at times, waterlogging. Field sampling as well as microcosm and reciprocal transplant experiments involving key species, Sarcocornia quinqueflora, Sporobolus virginicus, Paspalum vaginatum and Phragmites australis, suggest that a reduction in soil salinity has been an important factor in initiating successional change from saltmarsh to Phragmites reedswamp. The data also suggest that increased waterlogging has been an important factor in initiating vegetation change. This apparently paradoxical result (floodgates and associated drainage generally result in drying of wetlands) is likely to have resulted from occlusion of drainage lines (by sediment and reeds) and is, therefore, likely to be a condition that developed gradually. That is, the initial effect of the floodgates is expected to have been a drying of the swamp, followed over time by an increasing wetness. An examination of vegetation changes after removal of cattle from part of Hexham Swamp, suggests that grazing had little effect on species composition of vegetation or rate of expansion of Phragmites australis. However, grazing does affect vegetation structure (height and density), possibly favours some coloniser species (e.g. Sarcocornia quinqueflora) in particular environmental conditions, and possibly inhibits establishment of Phragmites australis.
3

Development and dynamics of the Atlantic rainforest during the Late Quaternary and its connections with the climate system

Martins Rodrigues, Jackson 27 June 2016 (has links)
No description available.
4

Modelling regional climate-vegetation interactions in Europe : A palaeo perspective

Strandberg, Gustav January 2017 (has links)
Studies in paleoclimate are important because they give us knowledge about how the climate system works and puts the current climate change in necessary perspective. By studying (pre)historic periods we increase our knowledge not just about these periods, but also about the processes that are important for climatic variations and changes. This thesis deals mainly with the interaction between climate and vegetation. Vegetation changes can affect climate in many different ways. These effects can be divided into two main categories: biogeochemical and biogeophysical processes. This thesis studies the biogeophysical effects of vegetation changes on climate in climate models. Climate models are a necessary tool for investigating how climate responds to changes in the climate system, as well as for making predictions of future climate. The biogeophysical processes are strongly related to characteristics of the land surface. Vegetation changes alter the land surface’s albedo (ability to reflect incoming solar radiation), roughness and evapotranspiration (the sum of evaporation and tran-spiration), which in turn affects the energy fluxes between the land surface and the atmosphere and thereby the climate. It is not, however, evident in what way; denser vegetation (e.g. forest instead of grassland) gives decreased albedo, which results in higher temperature, but also increased evapotranspiration, which contrastingly results in lower temperature. Vegetation changes are in this thesis studied in four different (pre)historic periods: two very cold periods with no human influence (c. 44,000 and 21,000 years ago), one warm period with minor human influence (c. 6,000 years ago) and a cold period with substantial human influence (c. 200 years ago). In addition to that the present climate is studied. The combination of these periods gives an estimate of the effect of both natural and anthropogenic vegetation on climate in different climatic contexts. The results show that vegetation changes can change temperature with 1–3 °C depending on season and region. The response is not the same everywhere, but depends on local properties of the land surface. During the winter half of the year, the albedo effect is usually most important as the difference in albedo between forest and open land is very large. During the summer half of the year the evapotranspiration effect is usually most important as differences in albedo between different vegetation types are smaller. A prerequisite for differences in evapotranspiration is that there is sufficient amount of water available. In dry regions, evapotranspiration does not change much with changes in vegetation, which means that the albedo effect will dominate also in summer. The conclusion of these studies is that vegetation changes can have a considerable effect on climate, comparable to the effect of increasing amounts of greenhouse gases in scenarios of future climate. Thus, it is important to have an appropriate description of the vegetation in studies of past, present and future climate. This means that vegetation has the potential to work as a feedback mechanism to natural climatic variations, but also that man can alter climate by altering the vegetation. It also means that mankind may have influenced climate before we started to use fossil fuel. Consequently, vegetation changes can be used as a means to mitigate climate change locally. / Studiet av paleoklimat är viktigt för att det ger kunskap om hur klimatsystemet fungerar samt för att det sätter nuvarande klimatförändring i ett nödvändigt perspektiv. Genom att studera (för)historiska perioder ökar vi vår kunskap om dessa perioder, men också om vilka processer som har betydelse för klimatets variationer. Denna avhandling behandlar framförallt interaktionen mellan klimat och växtlighet. Förändringar i växtligheten kan påverka klimatet på flera olika sätt. Dessa kan delas in i två huvudgrupper: biogeokemiska och biogeofysikaliska processer. Denna avhandling studerar de biogeofysikaliska effekterna på klimatet i klimatmodeller. Klimatmodeller är ett nödvändigt verktyg för att studera hur klimatet svarar på förändringar i klimatsystemet, samt för att göra förutsägelser om framtidens klimat. De biogeofysikaliska processerna är förknippade med markytans egenskaper. Förändrad växtlighet förändrar markytans albedo (förmågan att reflektera inkommande soltrålning), skrovlighet och förmågan att transportera vatten från marken till atmosfären genom evapotranspiration (summan av avdunstning och transpiration), vilket i sin tur påverkar energiflödena mellan markytan och atmosfären. Dessa förändringar påverkar sedermera klimatet. Det är emellertid inte självklart på vilket sätt; tätare växtlighet (t.ex. skog i stället för äng) ger minskat albedo vilket ger högre temperatur, men också ökad evapotranspiration vilket däremot ger lägre temperatur. Växtlighetsförändringars påverkan på klimatet studeras i denna avhandling i fyra olika (för)historiska perioder: två väldigt kalla perioder utan mänsklig påverkan (ca 44 000 och 21 000 år sedan), en varm period med liten mänsklig påverkan (ca 6 000 år sedan) och en kall period med avsevärd mänsklig påverkan (ca 200 år sedan). I tillägg till det studeras också dagens klimat. Resultaten visar att förändringar i växtlighet lokalt kan ha en signifikant effekt på klimatet. Kombinationen av dessa perioder ger en uppskattning av effekten av både naturlig och antropogen växtlighet i olika klimatsammanhang. Förändrad växtlighet kan ändra temperaturen med 1-3 °C beroende på årstid och område. Responsen är inte densamma överallt utan beror på lokala egenskaper hos markytan. Under vinterhalvåret är oftast albedoeffekten viktigast eftersom skillnaden i albedo mellan skog och öppet landskap då är mycket stor. Under sommarhalvåret är evapotranspirationen oftast viktigast eftersom skillnaden i albedo mellan olika växtlighetstyper då oftast är små. En förutsättning för det är att det finns tillräckligt med vatten tillgängligt för evapotranspiration. I torra områden förändras evapotranspirationen inte särskilt mycket när växtligheten förändras, vilket gör att albedoeffekten dominerar även på sommaren.  Slutsatsen av dessa studier blir att förändrad växtlighet kan ha en betydande effekt på klimatet, jämförbar med den effekt som ökade halter av växthusgaser har i scenarier för framtida klimat. Alltså är det viktigt att ha en korrekt beskrivning av växtligheten i studier av (för)historiskt, nutida och framtida klimat. Det betyder att växtligheten har potentialen att fungera som en återkopplingsmekanism till naturliga klimatvariationer, men också att människan kan påverka klimatet genom att förändra växtligheten. Det betyder också att mänskligheten kan ha påverkat klimatet innan vi började använda fossilt bränsle. Följaktligen kan växtlighetsförändringar användas som ett sätt att lokalt begränsa klimatförändringar. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>
5

Effects of perennial fires on the woody vegetation of Mole National Park, Ghana

Sackey, I., Hale, William H.G. January 2008 (has links)
No / Recurrent fires have a considerable potential to influence the structure and composition of savanna vegetation. In Mole National Park in Ghana, the policy is to burn the vegetation annually early in the dry season. This study aimed to assess the effects of these perennial fires on the trees and shrubs of the Park. To achieve this, scars on tree bole bases as well as mortality and top-kill to trees ¿ 2 m tall resulting from perennial fires were assessed in twenty 50 m x 50 m plots in the savanna vegetation near Grupe camp at the south-western section of the Park. Fire scars on tree bole bases were widespread, but were significantly more frequent on large trees (> 5 m tall) than small ones (< 2 m tall). Also, certain tree species, notably Burkea africana and Detarium microcarpum were more prone to scarring. The greater proportion of the scars had reached an advanced stage and the affected individuals were either moribund or were likely to be killed by subsequent fires or toppled by the wind. Contrary to the popular opinion that fire generally affects tree recruitment and not adult survival, fire-induced mortality and top-kill to large trees (> 5 m tall) was widespread among all the tree species, particularly Acacia dudgeoni, Burkea africana, Detarium microcarpum and Vitellaria paradoxa. These fire impacts will likely lead to changes in the relative abundance of the constituent tree species as well as a decline in the density of woody elements in the plant community as a whole unless burning frequency is reduced. The areas for which these predicted vegetation changes are valid can be generalized to include the vegetation in the northern half of the Park where similar conditions of high fuel load and intense fires are likely to prevail.
6

Mapping and Modelling of Vegetation Changes in the Southern Gadarif Region, Sudan, Using Remote Sensing / Land-Use Impacts on Biophysical Processes

Sulieman, Hussein Mohamed 10 January 2008 (has links) (PDF)
The study was conducted at the vicinity of the rural town of Doka in an area of about 55 x 40 km2. The aim of the study was to map and model the influences of the introduction of mechanized rain-fed agriculture and its rapid expansion on the natural vegetation in the southern Gadarif Region. To achieve these objectives the study utilized a series of techniques. Beside the intensive use of remote sensing imagery, interviews with key informants and farmers as well as detailed field surveys were carried out. Multi-temporal analyses of remote sensing imagery showed that during the seventies the average natural vegetation clearing rate increased most rapidly and then began to slow down. Farmers are aware that land degradation, in various forms, is taking place on their cultivated agricultural land. This is based on their perception and the interpretation of indicators such as weed infestation, reduced soil fertility and soil compaction. Continuous cropping, mono-cropping, rainfall shortage and the use of inferior seeds were the main reasons of land degradation indicated by the farmers. Abandonment of agricultural land to restore soil fertility is a common practice among farmers in the Gadarif Region. The study proved that the subsequent natural regeneration of plant species and the vegetation development on abandoned agricultural land are subject to the previous cultivation period and the duration of the fallow. The current regeneration capacity of the abandoned land may not be sufficient to reach full restoration of the previous vegetation climax except for some pockets which received more regenerative resources. Field surveys in conjunction with remotely sensed and topographic data have the potential to explain the restoration and rehabilitation patterns of degraded/abandoned agricultural land to a good extent. The findings of the study seem to be representative not only for the whole Gadarif Region or other areas in Sudan, but also for other regions in the Sahel Zone with similar problems and environmental and social conditions. One of the most practical conservation approaches is to let farmers play an active role in managing their abandoned land. Such management aims to allow for a certain level of use and benefits while maintaining the natural vegetation development on theses area in order to achieve maximal restoration. Although the study investigated the vegetation development in abandoned mechanized rainfed agricultural land, a full understanding of the path-way needs surveys that include more types of abandoned land and investigation of the effects of other local environmental factors (e.g. fire, grazing, distance from forests etc.) for more than one season.
7

Lesní vegetace východního Polabí v polovině 20. století a dnes / Forest vegetation in Eastern Elbe Basin in the mid-20th century and today

Pospíšková, Marie January 2014 (has links)
This thesis describes the shift in vegetation of broadleaf forests in eastern part of the Elbe River Basin between 1958-1968 and 2011-2013. It emphasizes the understorey vegetation. From lowland woodlands in other temperate regions in Europe and North America changes towards eutrophic and mesophytic vegetation are documented, specifically driven by changes in forest management and by atmospheric depositions; in some localities the game impact can be also important. The data were obtained by sampling 190 typological semi-permanent plots, which were precisely located - in 43% the original soil pit was found. The vegetation on study sites shifted towards nutrient-demanding, shade- adapted species, it was partly ruderalized. These changes can be seen on the level of species and communities as well as on phytosociological level. Increase of soil pH and moisture was discovered using Ellenberg indicator values. The number of seedlings and cover of shrubs also increased significantly. Homogenization of sites was significant as well although total number of species and alpha- diversity remained unchanged. These changes are probably caused by changes in forest management and by atmospheric depositions of nitrogen. On subset of plots in game-preserves the vegetation also demonstrated eutrophication but no increase in...
8

Změny lesní vegetace Šumavy a jejího podhůří během druhé poloviny 20. století / Forest vegetation changes in the Bohemian Forest during the second half of 20th century

Prach, Jindřich January 2012 (has links)
Long-term forest vegetation changes were studied in the Bohemian Forest and its foothills. New vegetation relevés were taken at sites of typological plots established by forest engineers between 1955 and 1980. Data from 158 semi-permanent plots were analysed using modern statistical methods. The data show significant changes and homogenization of the vegetation. Ellenberg indicator values indicate eutrofication. Repeated measurements of soil pH suggest acidification, but the interpretation of these data is complicated by methodological problems. The forests under study exhibit high spatial variability. No main prevailing trend in vegetation changes was found. The changes are considered to be related to sulphur and nitrogen deposition and forest management. The influence of increasing age of forest stands seems to be unimportant. Discussed are not only vegetation changes and their possible causes but also the possibilities and limitations of using such old forestry data in botanical and ecological studies.
9

Vegetationsförändringar i Hornborgasjöns naturreservat : med fokus på restaureringems följder / Vegetation changes at Lake Hornborga : focalpoint of the effects of the restoration

Sjöholm, Amanda January 2010 (has links)
Den här studien undersöker hur vegetationen förändras mellan 1979 och 2010 i området som idag är Hornborgasjöns naturreservat. Sjösänkningar i området ledde till att ett igenväxt träskområde ersatte en viktig vattenreservoar och närsaltfälla. Restaureringsarbetet under 80-talet var banbrytande och antagligen ett av vår tids mest omfattande naturvårdsarbete. Studien svarar också på om restaureringen uppnådde sitt mål och om resultatet blev som man tänkt sig. I arbetet skapades en aktuell vegetationskarta för 2010, denna jämfördes med en i arbetet digitaliserad vegetationskarta från 1979. Kartbilder skapades och justerades i ArcGIS och vegetationsytornas area framtogs för att möjliggöra en vegetationsanalys mellan kartorna. Vegetationsförändringarna i området visade sig vara omfattande mellan 1979 och 2010, där tydlig igenväxtningsmark med stora monokulturer ersattes med öppnare marker där vegetationstyperna var spridda över hela området i mindre ytor. Mångfalden i området ökade liksom vattenytan. Vattenytans stora utbredning efter restaureringen blev den stora överraskningen tillsammans med att sävvegetationen helt försvann. Undervattensvegetationens stora spridning räddade dock restaureringens syfte att gynna fågellivet trots sävruggarnas frånvaro. En ny viktig naturtyp framkom i vegetationskartan 2010, öppet vatten med död vegetation, där stora delar av vegetationstypen består av den för många hotade arter vitala biotopen död sumplövskog. / This study investigates vegetation changes in the nature reserve of Lake Hornborga between 1979 and 2010. Lowering of the surface of the lake had changed an important water reserve and nutritive salt trap into an overgrown fen and during the 80's a total pioneering restoration, perhaps the most important work of nature conservation of our time, was made. This study claims to answer if the restoration was successful and if its goals were reached. A current vegetation map for 2010 was created and adjusted in ArcGIS and this map was compared with a vegetation map of 1979. Vegetation areas were calculated to facilitate analyses between the maps. Large-scale vegetation changes have occurred between 1979 and 2010. Overgrown fenland with monoculture vegetation has been replaced by a more open landscape with a diversified growth and an open surface of water. The large extension of open surface and the disappearance of rush vegetation are two great surprises of the restoration. Thanks to a large-scale spread of underwater vegetation the aim of furthering birdlife could be reached despite the loss of rush vegetation. A new type of vegetation area has also been created, where  open water submerges dead vegetation, one of which is a biotope of dead marsh broadleaf trees, vital to many threatened species. / Vid kontakt med Lantmäteriet har muntlig bekräftelse getts gällande tillstånd av publicering av deras upphovsrätts skyddade material, där alla högskolearbeten ges sådant tillstånd vid alla Sveriges lärosäten. I mitt arbete gäller detta figur 1.
10

Změny vegetace vlhkých luk ve Slavkovském lese / Vegetation changes of wet meadows in Slavkovský les

Šimák, Martin January 2018 (has links)
This thesis focuses on the changes of vegetation of the wet meadows in Slavkovský Les during past decade. It uses data on vegetation gained from 100 permanent plots. By the analysis of the species composition and diversity it aims to elucidate the changes of the wet meadows over the last ten years. It aims to define, which are declining and which are becoming more common. Applied management should have a great impact on the observed vegetation changes so its effect is studied in the thesis as well. The knowledge of the suitable management should lead to conservation of the local biodiversity. The abiotic environmental factors are important as well as they can influence the species composition. These factors were studied by the application of Ellenberg indicator values on the species present in the study. These changes were compared in time and in a combination of time with a management type. Thus, we should be able to say how the environment has changed in the past decade and whether the type of management has any effect on the changes. Furthermore, the thesis explores whether changes in species composition over time may be explained by species traits. The results indicate that the species diversity and composition have indeed changed during the past decade. Apparently, the higher amount of...

Page generated in 0.13 seconds