• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluating Noise Reduction In Vehicle Exhaust Systems : Maximum Sound Power and Sensitivity Analysis of Insertion and Transmission Loss

Pang, Zen Fung January 2024 (has links)
Noise reduction in vehicle exhaust systems is crucial for mitigating the adverse health effects of noise from roadside traffic. Improvements to engine exhaust systems could be one avenue to reduce vehicle and roadside noise. Therefore, understanding the insertion loss and transmission loss is of crucial importance as these constitute important metrics for the effectiveness of mufflers in exhaust systems. In addition, knowledge about the maximum emitted sound power is also desirable as it is an important characteristic of the exhaust system affecting the final emitted noise. This study provides an overview of the theoretical underpinnings of the acoustics that model engine exhaust systems, where the maximum sound powers are presented, as well as explores the sensitivity of the insertion and transmission loss to input variables. A sensitivity analysis of the transmission and insertion loss was conducted using data provided by Scania, a large Swedish truck manufacturer, from which it was concluded that the provided transfer matrix exhibit stable behavior. More generally, in face of specific perturbations, if some conditions are meet, the resulting change to the insertion and transmission loss may only be an upwards or downwards translation, or no change at all.

Page generated in 0.0548 seconds