Spelling suggestions: "subject:"ehicle dynamics"" "subject:"aehicle dynamics""
41 |
On Objective Measures for Ride Comfort EvaluationStrandemar, Katrin January 2005 (has links)
An essential tool in the truck development process is the ability to quantify and grade vehicle dynamic behavior. Today this is performed either through subjective or objective tests. Subjective tests have the disadvantage that numerous factors influence test drivers’ opinions while objective measures have the advantage of repeatability. However, objective methods of today are often only able to provide a rough grading of vehicles. The main objective with this thesis is to develop more sensitive objective methods for ride comfort evaluation. An effective test procedure to measure driver perception sensitivity to small differences in vehicle ride is suggested and utilized. The driver sensitivity is tested on dynamic behavior that is typically graded in vehicle development. Cab motions from a truck are first measured and then recreated in a simulator where a test driver is seated. The perception threshold for small changes in typical vehicle motion is established in this way for each test person. The perception sensitivity tests indicate that humans are quite sensitive to transients in vehicle motion. One problem with many common vehicle ride measures is that the impact of transient behavior is small due to the averaging used to condense the measurement data into scalar measures. A new evaluation method for ride comfort, with influences from the well known handling diagram, is suggested. This method has four main advantages: it is fairly simple to interpret, it shows the absolute vibration level, it considers transient events separately and it shows changes in vehicle character with increasing excitation. Promising results from both measurements and simulations are derived. New technology has made it possible to vary vehicle suspension parameters during vehicle ride. In order to prescribe different damping for different vehicle modes, modal motion estimates are needed. A system identification approach is suggested. It yields improved estimates of vehicle modal motion compared to previous work. / QC 20101221
|
42 |
A study of a robust and accurate framework for Minimum-time optimal control of high-performance cars: from coaching professional drivers to autonomous racing.Pagot, Edoardo 27 January 2023 (has links)
In motorsport, simulating road vehicles driving at the limit of handling is a valuable tool to study and optimize their overall performance during the design and set-up phases. Along with Quasi-Steady-State optimization, optimal control (OC) is the most utilized technique to simulate the control and states of a vehicle during minimum-time maneuvers and has been used for offline lap-time optimization for more than twenty years now. Since the first applications of optimal control in this field, it has been clear that the solution of the minimum-time optimization does not represent a model of the human driver but instead substitutes him/her. However, the common points or divergences between the minimum-time strategy of human race drivers and the OC one are still unclear. Moreover, it seems that in the literature there is no agreement about what vehicle models must be used, and in general the choice of one model or the other is not clearly justified. Finally, thanks to the rise in popularity of autonomous driving and racing, optimal control has been used as path planner for automated vehicles: %nonetheless, the application of free-trajectory real-time nonlinear optimal control in Model Predictive Control (MPC) schemes, where the optimal controls are directly fed to the vehicle, is still an unexplored topic. nonetheless, the application of free-trajectory real-time nonlinear optimal control in Model Predictive Control (MPC) schemes, where the optimal controls are computed from a single optimization and directly fed to the vehicle, is a topic still open for exploration. The first aim of this thesis is to provide an objective comparison of several vehicle, tire, powertrain and road models to be used in minimum-time OC. In the first part of this work we thus detail several models of the vehicle and its subsystems. We then solve minimum-time OC problems on a series of test tracks adopting most of the model combinations and discuss the differences in the solutions. We then draw conclusions on the best model combinations to obtain realistic and reliable minimum-time maneuvers. The second part of the thesis aims to prove that the solutions of minimum-time OC problems are indeed different from the driving behavior of professional drivers, but they can be employed to coach the human driver and improve his/her racing performance. After modeling a high-performance vehicle manufactured by Ferrari, we again use optimal control to compute minimum-time maneuvers on two different tracks. A professional racer driving is then coached in following the OC strategy on the Ferrari driving simulator, and we objectively prove that the driver can outperform his previous lap times.
In the third and last part of the thesis, we aim to prove that free-trajectory real-time optimal control is a valid alternative to hierarchical MPC frameworks based on high-level path planning and low-level path tracing. We first develop a novel kineto-dynamic vehicle model able to satisfy the trade-off between computational lightness and accuracy in representing the vehicle's pure and combined dynamics. Then, by solving a minimum-time OC in real-time, we are able to autonomously drive a real scaled vehicle around a track at the limits of tire adherence.
|
43 |
Modification of a Full Scale Personal Hovercraft to Support Research in Dynamics and ControlSteel, Gwyneth Carrie 04 June 2024 (has links)
The goals of this thesis are to modify a full-scale personal hovercraft to perform autonomous maneuvers on flat ground, develop a first principles of the craft, and present data on the vehicle behavior in field trials. The hovercraft, initially designed for manual control by a rider, was modified both physically and with software to allow for remote and autonomous operation. The design leverages the actuator control solutions that are already implemented on the hovercraft for ease of installation and control. A key modification made in the design is the addition of auxiliary fans to increase overall thrust. Controller designs are presented to manage the rotation rate of the added fans. The purpose of the dynamic model is to assist in the design and evaluation of model-based controllers for the vehicle speed and heading. A first principles model was developed to give an approximate understanding of the vehicle's behavior. Data collected during field trials was used to challenge the assumptions made in the first principles model. Based on the field data, the model was updated to provide a better basis to evaluate model based controllers. Additionally, several key observations about the hovercraft performance were noted during the field trials. Controlling the vehicle heading is a nontrivial task and will require a responsive and authoritative controller / Master of Science / Hovercraft are useful vehicles because they can travel over many terrains, including water and land, without being impacted severely by friction. However, they also have several drawbacks including being difficult to steer and having insufficient thrust to scale a steep incline. To address these concerns, we present a design for a modified hovercraft that is capable of being steered with a remote control or with autonomy software. Additionally, eight fans were added to increase the overall thrust of the vehicle to allow it to drive uphill.
A model of the hovercraft dynamics was made to allow us to study its behavior. Field trials were conducted to collect data on the hovercraft's performance from the onboard sensors.
This data was used to improve the dynamic model so that it can be used in the future to decide the best control design for the hovercraft steering.
|
44 |
Development of sensor fusion algorithms for vehicle velocity estimationMallma Veliz, Anthony Cesar January 2024 (has links)
As the vehicle's autonomy level increases, new security systems are added to its functionality so accidents can be avoided. Those security systems can only be reliable and work effectively if an accurate estimation of the vehicle's velocity is available. Given the importance of the estimation of velocity in vehicles, in this thesis, we used the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF) to improve the velocity estimation of a heavy-duty dumper vehicle. Those methods were used to fuse the wheels' speed information and the Inertial Measurement Unit (IMU) readings available from the vehicle. A simulation model of the vehicle was created using Simulink which outputted the ground truth velocities that were used as a reference for comparison with the estimators when the vehicle went through different path patterns that included combinations of going straight, steering, and experiencing excessive wheel slip. Moreover, the sensors were simulated in Simulink as well and they provided the data that was used by the MATLAB scripts that coded the EKF and the UKF. The performance of the estimators was compared with the ground truth velocities by calculating the Root Mean Squared Error (RMSE) in each case. The results from the experiments showed that both the EKF and the UKF performed the same for the used simulation model, however, both improved the velocity estimation by decreasing the RMSE values from 0.46 (estimation using only IMU information) and 0.226 (estimation based only on wheels information) to 0.20. This is evidence that the Kalman Filter variations are a good option to test when the task is estimating the velocity of a vehicle.
|
45 |
A Three Dimensional Discretized Tire Model For Soft Soil ApplicationsPinto, Eduardo Jose 02 April 2012 (has links)
A significant number of studies address various aspects related to tire modeling; most are dedicated to the development of tire models for on-road conditions. Such models cover a wide range of resolutions and approaches, as required for specific applications. At one end of the spectrum are the very simple tire models, such as those employed in real-time vehicle dynamic simulations. At the other end of the spectrum are the very complex finite element models, such as those used in tire design. In between these extremes, various other models have been developed, at different levels of compromise between accuracy and computational efficiency. Existing tire models for off-road applications lag behind the on-road models. The main reason is the complexity added to the modeling due to the interaction with the soft soil. In such situations, one must account for the soil dynamics and its impact on the tire forces, in addition to those aspects considered for an on-road tire.
The goal of this project is to develop an accurate and comprehensive, while also efficient, off-road tire model for soft soil applications. The types of applications we target are traction, handling, and vehicle durability, as needed to support current army mobility goals. Thus, the proposed approach is to develop a detailed semi-analytical tire model for soft soil that utilizes the tire construction details and parallels existing commercially available on-road tire models. The novelty of this project relies in developing a three-dimensional three-layer tire model employing discrete lumped masses and in improving the tire-soil interface model. This will be achieved by enhancing the resolution of the tire model at the contact patch and by accounting for effects and phenomena not considered in existing models. / Master of Science
|
46 |
An Approach to Using Finite Element Models to Predict Suspension Member Loads in a Formula SAE VehicleBorg, Lane 03 August 2009 (has links)
A racing vehicle suspension system is a kinematic linkage that supports the vehicle under complex loading scenarios. The suspension also defines the handling characteristics of the vehicle. Understanding the loads that the suspension carries in a variety of loading scenarios is necessary in order to properly design a safe and effective suspension system. In the past, the Formula SAE team at Virginia Tech has used simplified calculations to determine the loads expected in the suspension members. This approach involves several large assumptions. These assumptions have been used for years and the justification for them has been lost.
The goal of this research is to determine the validity of each of the assumptions made in the method used for calculating the vehicle suspension loads by hand. These assumptions include modeling the suspension as pinned-pinned truss members to prevent bending, neglecting any steering angle input to the suspension, and neglecting vertical articulation of the system. This thesis presents an approach to modeling the suspension member loads by creating a finite element (FE) model of the entire suspension system. The first stage of this research covers the validation of the current calculation methods. The FE model will replicate the suspension with all of the current assumptions and the member loads will be compared to the hand calculations. This truss-element-based FE model resulted in member loads identical to the hand calculations.
The next stage of the FE model development converts the truss model to beam elements. This step is performed to determine if the assumption that bending loads are insignificant is a valid approach to calculating member loads. In addition to changing the elements used from truss to beam element, the suspension linkage was adapted to more accurately model the methods by which each member is attached to the others. This involves welding the members of each control arm together at the outboard point as well as creating a simplified version of the pull rod mounting bracket on the upper control arm. The pull rod is the member that connects the ride spring, damper, and anti-roll bar to the wheel assembly and had previously been mounted on the upright. This model reveals reduced axial components of load but increases in bending moments sizable enough to reduce the resistance to buckling of any member in compression.
The third stage of model development incorporates the steer angle that must be present in loading scenarios that involve some level of cornering. An analysis of the vehicle trajectory that includes the effects of slip angle is presented and used to determine the most likely steer angle the vehicle will experience under cornering. The FE model was adapted to include the movement of the steering linkage caused by driver input. This movement changes the angle of the upright and steering linkage as well as the angle at which wheel loads are applied to the suspension. This model results in a dramatic change in member loads for loading cases that involve a component of steering input.
Finally, the FE model was further enhanced to account for vertical movement of the suspension as allowed by the spring and damper assembly. The quasi-static loading scenarios are used to determine any member loading change due to vertical movement. The FE model is also used to predict the amount of vertical movement expected at the wheel center. This data can be used by the suspension designer to determine if changes to the spring rate or anti-roll bar stiffness will result in a more desirable amount of wheel movement for a given loading condition. This model shows that there is no change in the member loads due to the vertical movement of the wheel.
This thesis concludes by presenting the most important changes that must occur in member load calculations to determine the proper suspension loading under a variety of loading scenarios. Finally, a discussion of future research is offered including the importance of each area in determining suspension loads and recommendations on how to perform this research. / Master of Science
|
47 |
Location-Aware Adaptive Vehicle Dynamics System: Linear Chassis PredictionsBandy, Rebecca Anne 28 May 2014 (has links)
One seminal question that faces a vehicle's driver (either human or computer) is predicting the capability of the vehicle as it encounters upcoming terrain. A Location-Aware Adaptive Vehicle Dynamics (LAAVD) System is being developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. In contrast to current active safety systems, this system is predictive, not reactive. The LAAVD System employs a predictor-corrector method in which the driver's input commands (throttle, brake, steering) and upcoming driving environment (terrain, traffic, weather) are predicted. An Intervention Strategy uses a novel measure of handling capability, the Performance Margin (PM), to assess the need to intervene. The driver's throttle and brake control are modulated to affect desired changes to the PM in a manner that is minimally intrusive to the driver's control authority. This system depends heavily on an understanding of the interplay between the vehicle's longitudinal, lateral, and vertical forces, as well as their resulting moments. These vehicle dynamics impact the PM metric and ultimately the point at which the Intervention Strategy will modulate the throttle and brake controls. Real-time implementation requires the development of computationally efficient predictive models of the vehicle dynamics.
In this work, a method for predicting future vehicle states, based on current states and upcoming terrain, is developed using perturbation theory. An analytical relationship between the change in the spindle forces and the resulting change in the PM is derived, and the inverse relationship, between change in PM and resulting changes in longitudinal forces, is modeled. This model is implemented in the predictor-corrector algorithm of the Intervention Strategy. Corrections to the predicted states are made at each time step using a detailed, full, non-linear vehicle model. This model is run in real-time and is intended to be replaced with a drive-by-wire vehicle. Finally, the impact of this work on the automotive industry is discussed and recommendations for future work are given. / Master of Science
|
48 |
Design, Modelling, and Test of an Electromagnetic Speed Bump Energy HarvesterTodaria, Prakhar 29 April 2016 (has links)
Speed bump energy harvester, which aims to harvest energy from the passing by vehicles by absorbing their kinetic and potential energy, is designed, fabricated, simulated, and tested in this research. The proposed design is analyzed with a theoretical modelling which has then been validated with a ground test. Result reveals that the prototype has been able to produce up to 600 watts of peak power and around 150 watts of RMS power which is significant number. Further analysis has been done which theoretically suggests that the numbers could be increased up to 1 KW by optimizing the speed bump design and varying the system parameters such as electrical damping, mechanical damping, velocity and weight of the vehicles. Overall, system is able to increase the overall energy density by using Mechanical Motion Rectification (MMR) technology which would allow the increase in the power generation almost by double. Furthermore, different vehicle models have been used to analyze the effectiveness and accuracy of the harvester and also, the effect of harvester on the dynamics of the vehicle has been studied and analyzed in detail. / Master of Science
|
49 |
Dynamic Analysis of Semi-Active Control Techniques for Vehicle ApplicationsGoncalves, Fernando D. 14 August 2001 (has links)
This experimental study evaluates the dynamic response of five semi-active control policies as tested on a single suspension quarter-car system. Incorporating a magneto-rheological damper, the full-scale 2DOF quarter-car system was used to evaluate skyhook, groundhook, and hybrid control. Two alternative skyhook policies were also considered, namely displacement skyhook and relative displacement skyhook. As well as exploring the relative benefits of each of these controllers, the performance of each semi-active controller was compared to the performance of conventional passive damping.
Each control policy is evaluated for its control performance under three different base excitations: chirp, step, and pure tone. Corresponding to the chirp input, transmissibilities and auto spectrums are considered for each control policy. Specifically, transmissibilities between the sprung mass displacement and the unsprung mass displacement are generated relative to the input displacement. Further, the ratio between the relative displacement across the damper and the input displacement is evaluated for each control technique. The chirp input also reveals the results of the auto spectrums of the sprung and unsprung mass accelerations. Both the step input and the pure tone input were used to generate time domain values of RMS and peak-to-peak displacements and accelerations.
This study shows that semi-active control offers benefits beyond those of conventional passive damping. Further, traditional skyhook control is shown to outperform the less conventional alternative skyhook policies. / Master of Science
|
50 |
Simulation and Testing of Wave-Adaptive Modular VesselsPeterson, Andrew William 20 January 2014 (has links)
This study provides a comprehensive performance analysis of Wave-Adaptive Modular Vessels (WAM-V) using simulations and testing data. WAM-Vs are a new class of marine technology that build upon the advantages of lightweight, low-draft, catamaran construction. Independent suspensions above the hulls isolate the passengers and equipment from the harsh sea environment. Enhanced understanding of the relationship between suspension and vehicle performance is critical for future missions of interest to the U.S. Navy.
Throughout this study, the dynamic properties of three different WAM-Vs were evaluated. A multi-body dynamics simulation was developed for the 100-ft WAM-V 'Proteus' based on an automotive 4-post shaker rig. The model was used to characterize the sensitivities of different suspension parameters and as a platform for future models. A 12-ft unmanned surface vessel (USV) was instrumented and sea trials were conducted in the San Francisco Bay. A dynamic 4-post simulation was created for the USV using displacement inputs calculated from acceleration data via a custom integration scheme. The data was used to validate the models by comparing the model outputs to sensor data from the USV.
A vertical hydrodynamics testing rig was developed to investigate the interaction between the pontoons and the water surface to improve the understanding of how hydrodynamic forces affect suspension performance. A model was created to accurately simulate the hydrodynamic forces that result from vertical pontoon motion. The model was then scaled to fit a 33-ft WAM-V prototype. The 33-ft WAM-V was instrumented and sea trials were conducted in Norfolk, VA. The WAM-V's suspension was upgraded based on the testing results. A 2-post rig was also built for evaluating the 33-ft WAM-V's dynamics. Two dynamic models were made for the 33-ft WAM-V to evaluate different suspension designs.
The results from this study have numerous impacts on the naval community and on the development of WAM-Vs. The methodology for testing and evaluation will allow for future WAM-V designs to be compared under controlled circumstances. The performance of WAM-Vs can then be compared against conventional platforms to determine their suitability for future missions. Simulation development will enable future WAM-Vs to be evaluated prior to undergoing sea trials. The hydrodynamic models become a powerful design tool that can be easily scaled and combined with the 4-post models. By providing the simulations and test data to future vessel designers, the designers will be able to intelligently evaluate numerous iterations early in the design phase, improving performance and safety. / Ph. D.
|
Page generated in 0.075 seconds