Spelling suggestions: "subject:"vektorrum"" "subject:"vektorraum""
1 |
Erdős-Kaplansky SatsenLundin, Edvin January 2023 (has links)
Inom linja ̈r algebra har varje vektorrum ett s ̊a kallat dualrum, vilket är ett vektorrum bestående av alla linjära funktioner från det ursprungliga rummet till sin kropp. Att beräkna dimensionen av ett dualrum tillhörande ett ändlig-dimensionellt vektorrum är relativt enkelt, för oändlig-dimensionella vektorrum är det mer komplicerat. Den sats vi ska diskutera, Erdős–Kaplansky Satsen, ämnar lösa den frågan med påståendet att ett dualrum tillhörande ett oändlig-dimensionellt vektorrum har dimension lika med sin kardinalitet.
|
2 |
Investigating Performance of Different Models at Short Text Topic Modelling / En jämförelse av textrepresentationsmodellers prestanda tillämpade för ämnesinnehåll i korta texterAkinepally, Pratima Rao January 2020 (has links)
The key objective of this project was to quantitatively and qualitatively assess the performance of a sentence embedding model, Universal Sentence Encoder (USE), and a word embedding model, word2vec, at the task of topic modelling. The first step in the process was data collection. The data used for the project was podcast descriptions available at Spotify, and the topics associated with them. Following this, the data was used to generate description vectors and topic vectors using the embedding models, which were then used to assign topics to descriptions. The results from this study led to the conclusion that embedding models are well suited to this task, and that overall the USE outperforms the word2vec models. / Det huvudsakliga syftet med det i denna uppsats rapporterade projektet är att kvantitativt och kvalitativt utvärdera och jämföra hur väl Universal Sentence Encoder USE, ett semantiskt vektorrum för meningar, och word2vec, ett semantiskt vektorrum för ord, fungerar för att modellera ämnesinnehåll i text. Projektet har som träningsdata använt skriftliga sammanfattningar och ämnesetiketter för podd-episoder som gjorts tillgängliga av Spotify. De skriftliga sammanfattningarna har använts för att generera både vektorer för de enskilda podd-episoderna och för de ämnen de behandlar. De båda ansatsernas vektorer har sedan utvärderats genom att de använts för att tilldela ämnen till beskrivningar ur en testmängd. Resultaten har sedan jämförts och leder både till den allmänna slutsatsen att semantiska vektorrum är väl lämpade för den här sortens uppgifter, och att USE totalt sett överträffar word2vec-modellerna.
|
3 |
Stylometric Embeddings for Book Similarities / Stilometriska vektorer för likhet mellan böckerChen, Beichen January 2021 (has links)
Stylometry is the field of research aimed at defining features for quantifying writing style, and the most studied question in stylometry has been authorship attribution, where given a set of texts with known authorship, we are asked to determine the author of a new unseen document. In this study a number of lexical and syntactic stylometric feature sets were extracted for two datasets, a smaller one containing 27 books from 25 authors, and a larger one containing 11,063 books from 316 authors. Neural networks were used to transform the features into embeddings after which the nearest neighbor method was used to attribute texts to their closest neighbor. The smaller dataset achieved an accuracy of 91.25% using frequencies of 50 most common functional words, dependency relations, and Part-of-speech (POS) tags as features, and the larger dataset achieved 69.18% accuracy using a similar feature set with 100 most common functional words. In addition to performing author attribution, a user test showed the potentials of the model in generating author similarities and hence being useful in an applied setting for recommending books to readers based on author style. / Stilometri eller stilistisk statistik är ett forskningsområde som arbetar med att definiera särdrag för att kvantitativt studera stilistisk variation hos författare. Stilometri har mest fokuserat på författarbestämning, där uppgiften är att avgöra vem som skrivit en viss text där författaren är okänd, givet tidigare texter med kända författare. I denna stude valdes ett antal lexikala och syntaktiska stilistiska särdrag vilka användes för att bestämma författare. Experimentella resultat redovisas för två samlingar litterära verk: en mindre med 27 böcker skrivna av 25 författare och en större med 11 063 böcker skrivna av 316 författare. Neurala nätverk användes för att koda de valda särdragen som vektorer varefter de närmaste grannarna för de okända texterna i vektorrummet användes för att bestämma författarna. För den mindre samlingen uppnåddes en träffsäkerhet på 91,25% genom att använda de 50 vanligaste funktionsorden, syntaktiska dependensrelationer och ordklassinformation. För den större samlingen uppnåddes en träffsäkerhet på 69,18% med liknande särdrag. Ett användartest visar att modellen utöver att bestämma författare har potential att representera likhet mellan författares stil. Detta skulle kunna tillämpas för att rekommendera böcker till läsare baserat på stil.
|
Page generated in 0.0303 seconds