• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 9
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 63
  • 63
  • 63
  • 39
  • 22
  • 20
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The Bed Nucleus of the Stria Terminalis between Stress and Reward / Le Noyau du Lit de la Strie Terminale : entre Stress et Récompense

Glangetas, Christelle 18 December 2014 (has links)
L’objectif principal de mon projet de thèse a été d’identifier les mécanismes neuronaux adaptatifs se mettant en place au niveau des circuits de la récompense et des circuits activés en réponse à un stress aigu. Plus spécifiquement, nous avons étudié le rôle du noyau du lit de la strie terminale (BNST) au sein de ces deux circuits. Mon hypothèse est que le BNST appartient à un circuit de structures interconnectées dans lequel il intègre des informations contextuelles (hippocampe ventral) et des informations émotionnelles (cortex préfrontal médian) afin, d’une part, de réguler les niveaux d’anxiété innés ainsi que les réponses induites par les centres du stress suite à un épisode de stress aigu mais également, d’adapter l’activité des neurones dopaminergiques de l’aire tegmentale ventrale (VTA) en vue de motiver ou d’empêcher la reproduction d’un comportement associé à un stimulus récompensant ou aversif. Afin de tester cette hypothèse, nous avons mis en place et développé différents projets de recherche combinant des approches d’électrophysiologie in vivo, anatomiques et comportementales. Dans un premier temps, nous nous sommes intéressés au BNST en tant que structure clef participant à la régulation des centres de stress. Grâce à l’utilisation d’approches d’électrophysiologie in vivo chez la souris anesthésiée, nous avons montré qu’après l’exposition à un stress aigu, les neurones du BNST adaptent leur réponse suite à la stimulation du cortex préfrontal médian et passent d’une dépression à long terme (LTD) en situation contrôle à une potentialisation à long terme (LTP) après un stress aigu. Nous avons disséqué une partie des mécanismes permettant l’élaboration de ces plasticités grâce à l’utilisation de souris génétiquement modifiés pour le récepteur aux endocannabinoïdes de type 1 (CB1-R). Ainsi, nous avons trouvé que la LTD et la LTP mis en place dans le BNST sont médiées par le système endocannabinoïde via les récepteurs CB1. Ensuite, nous avons étudié le rôle du ventral subiculum (vSUB) dans la régulation des neurones du BNST ainsi que l’impact de l’activation de cette voie vSUB-BNST sur l’autre voie glutamatergique ILCx-BNST. Tout d’abord, nous avons montré par des approches électrophysiologiques et anatomiques, qu’un même neurone du BNST est capable d’intégrer des informations provenant à la fois du ventral subiculum et du cortex infralimbic (ILCx). Nous avons induit in vivo une LTP NMDA dépendante dans la voie vSUB-BNST suite à un protocole de stimulation haute fréquence dans le vSUB alors qu’en parallèle ce même protocole induit une LTD sur ces mêmes neurones dans la voie ILCx–BNST. Deplus, nous avons noté que ces adaptations plastiques se mettant en place dans le BNST suiteà une simple stimulation haute fréquence dans le vSUB permettent à long terme de diminuerles niveaux d’anxiété innés chez le rat. Enfin, nous avons mis en évidence que le BNST est un relai excitateur entre le vSUBet la VTA. Nous avons montré qu’une stimulation à haute fréquence dans le vSUBpotentialise in vivo l’activité des neurones dopaminergiques (DA) de la VTA. Or le vSUBne projette pas de manière directe sur les neurones DA de la VTA. Nous avons observé quece protocole de stimulation haute fréquence dans le vSUB induit dans un premier temps uneLTP NMDA dépendante dans les neurones du BNST projetant à la VTA qui est nécessairepour observer cette potentialisation des neurones DA. En dernier lieu, nous avons montréque cette potentialisation des neurones DA de la VTA augmente la réponse locomotrice à unchallenge avec de la cocaine.Ainsi, l’ensemble de ces projets nous ont permis de confirmer et de préciser lafonction majeure du BNST dans la régulation du stress et de l’anxiété ainsi que dans lecircuit de la motivation. / The main goal of my PhD was to identify the adaptive neuronal mechanismsdeveloping in the reward circuit and in the circuit implicated in the regulation of stressresponses. More specifically, we have studied the function of the bed nucleus of the striaterminalis (BNST) in both circuits.My hypothesis was that, the BNST belongs to interconnected circuits in whichintegrates contextual (from ventral hippocampus) and emotional informations (from medialprefrontal cortex). Thus, the BNST diffuses these informations in order to regulate the basalinnate level of anxiety and stress centers responses induced after acute stress exposure, butalso to adapt the activity of dopaminergic neurons of the ventral tegmental area (VTA) thatcan promote or prevent a behavioral task associated with a rewarding or aversive stimulus.To test this hypothesis, we decided to develop several research projects usingelectrophysiological, anatomical and behavioral approaches.Firstly, we focused our interest on the stress circuit in which the BNST is a keystructure which participates in regulating the responses of stress centers after acute stressexposure. By using in vivo electrophysiology approach in anesthetized mice, we haveshown that after acute restraint stress, BNST neurons adapt their plastic responses inducedby the tetanic stimulation of the medial prefrontal cortex: switch from long term depression(LTD) under control condition to long term potentiation (LTP) after acute stress condition.Furthermore, we demonstrated that both LTD and LTP are endocannabinoid dependent byusing genetic modified mice for the type 1 endocannabinoid receptors and localpharmacological approach in the BNST.In a second step, we studied the function of the ventral subiculum (vSUB) in theregulation of BNST neurons and the impact of the vSUB-BNST pathway activation on theother glutamatergic ILCx-BNST pathway. In a first set of experiments, we showed that asame single BNST neuron could integrate informations from both vSUB and the infralimbiccortex. By using high frequency stimulation (HFS) protocols, we induced in vivo NMDAdependentLTP in the vSUB-BNST pathway whereas the same protocol led to LTD in thesame BNST neurons in the ILCx-BNST pathway. Moreover, we noted single application ofHFS protocol in the vSUB induced a long term decrease of the basal innate level of anxietyin rats.Lastly, we presented the BNST as a key excitatory relay between the vSUB and theVTA. Here, we have shown that in vivo HFS protocols in the vSUB potentiate the activity ofdopaminergic (DA) neurons of the VTA. However, the vSUB does not directly project to theVTA. We observed that a HFS protocol in the vSUB first induce NMDA-dependent LTP inBNST neurons that project to the VTA, which is necessary to promote the potentiation of7VTA DA neurons. In the last step, we demonstrated in vivo that the potentiation of VTA DAneurons increases the locomotor response to cocaine challenge.All together, these projects allow us to confirm and detail the major function of theBNST in the regulation of stress and anxiety and also in the motivational circuit.
62

Chronic Ethanol Drinking by Alcohol-preferring Rats Increases the Sensitivity of the Mesolimbic Dopamine System to the Reinforcing and Stimulating Effects of Cocaine

Oster, Scott M. 20 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Alcohol and cocaine are commonly co-abused drugs, and those meeting criteria for both cocaine and alcohol use disorders experience more severe behavioral and health consequences than those with a single disorder. Chronic alcohol (ethanol) drinking increased the reinforcing and dopamine (DA) neuronal stimulating effects of ethanol within mesolimbic regions of the central nervous system (CNS) of alcohol-preferring (P) rats. The objectives of the current study were to determine if chronic continuous ethanol drinking produced: (1) alterations in the sensitivity of the nucleus accumbens shell (AcbSh) to the reinforcing effects of cocaine, (2) changes in the magnitude and time course of the local stimulating effects of cocaine on posterior ventral tegmental area (pVTA) DA neurons, and (3) a persistence of alterations in the stimulating effects of cocaine after a period of protracted abstinence. Female P rats received continuous, free-choice access to water and 15% v/v ethanol for at least 10 wk (continuous ethanol-drinking; CE) or access to water alone (ethanol-naïve; N). A third group of rats received the same period of ethanol access followed by 30 d of protracted abstinence from ethanol (ethanol-abstinent; Ab). CE and Ab rats consumed, on average, 6-7 g/kg/d of ethanol. Animals with a single cannula aimed at the AcbSh responded for injections of cocaine into the AcbSh during four initial operant sessions. Cocaine was not present in the self-infused solution for the subsequent three sessions, and cocaine access was restored during one final session. Animals with dual ipsilateral cannulae aimed at the AcbSh and the pVTA were injected with pulsed microinfusions of cocaine into the pVTA while DA content was collected for analysis through a microdialysis probe inserted into the AcbSh. During the initial four sessions, neither CE nor N rats self-infused artificial cerebrospinal fluid (aCSF) or 0.1 mM cocaine into the AcbSh. CE, but not N, rats self-administered 0.5 mM cocaine into the AcbSh, whereas both groups self-infused concentrations of 1.0, 2.0, 4.0, or 8.0 mM cocaine. When cocaine access was restored in Session 8, CE rats responded more on the active lever and obtained more infusions of 0.5, 1.0, 2.0, or 4.0 mM cocaine compared to N rats. Microinjection of aCSF into the pVTA did not alter AcbSh DA levels in N, CE, or Ab rats. Microinjections of 0.25 mM cocaine into the pVTA did not significantly alter AcbSh DA levels in N animals, moderately increased DA levels in CE rats, and greatly increased DA levels in Ab rats. Microinjections of 0.5 mM cocaine into the pVTA modestly increased AcbSh DA levels in N animals, robustly increased DA levels in CE rats, and did not significantly alter DA levels in Ab rats. Microinjections of 1.0 or 2.0 mM cocaine into the pVTA modestly increased AcbSh DA levels in N animals but decreased DA levels in CE and Ab rats. Overall, long-term continuous ethanol drinking by P rats enhanced both the reinforcing effects of cocaine within the AcbSh and the stimulatory and inhibitory effects of cocaine on pVTA DA neurons. Alterations in the stimulatory and inhibitory effects of cocaine on pVTA DA neurons were not only enduring, but also enhanced, following a period of protracted abstinence from ethanol exposure. Translationally, prevention of chronic and excessive alcohol intake in populations with a genetic risk for substance abuse may reduce the likelihood of subsequent cocaine use.
63

大腦度巴胺系統在大鼠操作式制約行為中所扮演的角色:以時間為主 / The Role of Brain Dopamine Systems on Operant Conditioned Behavior in the Rat: From Temporal Perspective

鄭瑞光 Unknown Date (has links)
周邊注射安非它命能夠影響動物受試在表現與時間知覺有關的操作式制約行為作業,歷來被研究者認為是大腦多巴胺神經系統與動物時間知覺系統有關的主要證據之一。本研究所共同採用的研究方法為先注射多巴胺受體專屬拮抗劑再於大鼠受試周邊腹腔注射安非它命的方式探討安非它命影響大鼠時間知覺的大腦機制為何。實驗一利用區辨性增強低頻反應作業觀察周邊注射多巴胺受體專屬拮抗劑何者可以反制周邊安非它命對此作業的影響效果,結果發現多巴胺D1受體拮抗劑SCH23390與D2受體拮抗劑raclopride均可反制周邊安非它命的效果。實驗二同樣利用區辨性增強低頻反應作業,但是將SCH23390與raclopride分別注入海馬迴、背側中區紋狀體、腹側側邊紋狀體、依核、內側前額葉皮質以及腹側頂蓋區等六個部位,觀察何種多巴胺受體拮抗劑可在那些大腦部位產生反制周邊安非它命的效果。結果發現SCH23390可在海馬迴、依核、內側前額葉皮質以及腹側頂蓋區等四個部位產生反制周邊安非它命的效果,而raclopride可在腹側側邊紋狀體與內側前額葉皮質兩個部位產生同樣的反制效果。實驗三利用高峰時距作業觀察SCH23390在海馬迴與內側前額葉皮質是否能反制周邊安非它命對此作業的影響效果,結果發現SCH23390僅在海馬迴會影響大鼠受試的正常表現,特別是在與周邊安非它命同時注射的時候。綜合以上結果顯示,周邊注射安非它命能夠使大鼠受試在區辨性增強低頻反應作業當中表現出時間知覺變快的傾向,這個效果需要同時透過大腦內的海馬迴、依核、內側前額葉皮質以及腹側頂蓋區的多巴胺D1類受體和腹側側邊紋狀體與內側前額葉皮質的多巴胺D2類受體。 / The central dopaminergic system has been hypothesized to play a role in time perception based on the results that peripheral injections of d-amphetamine alter the responses in time-related operant conditioned behavioral tasks. The present study investigated the effect by injecting specific dopamine receptor antagonists before peripheral d-amphetamine injections in rats. Data from Experiment I showed that both peripheral the dopamine receptor D1 antagonist SCH23390 and D2 antagonist raclopride could attenuate the response alteration on differential reinforcement of low-rates responding task induced by peripheral d-amphetamine. By using the DRL task, Experiment 2 employed the microjeciton technique to determine the neural substrates for the DA receptor antagonist to attenuate the effect of peripheral d-amphetamine. The infusion sites for DA receptor antagonist were the hippocampus, the dorsomedial striatum, the ventrolateral striatum, the nucleus accumbens, the medial prefrontal cortex, and the ventral tegme ntal area. The results showed that SCH23390 infused into the hippocampus, the nucleus accumbens, the medial prefrontal cortex, the ventral tegmental area could attenuate the effect induced by peripheral d-amphetamine, and such attenuation effects were also observed for raclopride infused into the ventrolateral striatum, the medial prefrontal cortex. Experiment 3 tried to confirm the results of Experiment 2 by microinjecting SCH23390 in hippocampus and medial prefrontal cortex under peak-interval task. Only SCH23390 in the hippocampus altered the subject's normal performance in this task especially when combined with peripheral injection of d-amphetamine. In conclusion, that the response alteration on the DRL task induced by peripheral injection ofd-amphetamine suggests the subject's timing perception being accelerated. These effects of d-amphetamine were mediated by simultaneous activation of multiple dopamine receptor subtypes including D1 receptors located in the hippocampus, nucleus accumbens, medial pref rontal cortex, ventral tegmental area, as well as D2 receptors located in the ventrolateral striatum, medial prefrontal cortex.

Page generated in 0.1118 seconds