• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 17
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 108
  • 35
  • 27
  • 23
  • 22
  • 22
  • 21
  • 19
  • 16
  • 13
  • 12
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Molecular Basis of Verticillium dahliae Pathogenesis on Potato

El-Bebany, Ahmed Farag A. M. 09 December 2010 (has links)
Verticillium wilt is a serious disease in a wide range of economic crops worldwide. Verticillium wilt of potato is caused, primarily, by the fungus Verticillium dahliae. Disease management requires understanding of V. dahliae pathogenesis and interactions with potato, which was the main objective of this study. A differential potato-V. dahliae pathosystem was established where pathogenicity of four V. dahliae isolates with different levels of aggressiveness was evaluated on two potato cultivars, Kennebec (susceptible) and Ranger Russet (moderately resistant). External and internal symptoms and growth measurements revealed that isolates Vd1396-9 and Vs06-14 are highly and weakly aggressive, respectively. These two isolates were selected for transcriptomics and proteomics investigations to identify pathogenicity-related factors. Transciptomics analysis was conducted in both isolates after elicitation by root extracts from either Kennebec or Ranger Russet using a combinational approach involving subtractive hybridization and cDNA-AFLP. A total of 573 differentially expressed transcripts were detected in one or the other isolate. Among them, 185 transcripts of interest were recovered, re-amplified, sequenced and searched against NCBI and the Broad Institute V. dahliae genome databases for identification. The two contrasting-aggressiveness isolates were used for a comparative proteomics investigation. The first proteomic map of V. dahliae was established. The proteomics analysis was carried out using 2-Dimentional electrophoresis and mass spectrometry. Twenty five proteins were differentially expressed and identified in one or the other isolate. Many of the identified genes/proteins showed potential involvement in pathogenesis of V. dahliae or other fungi. Genes of stress response regulator A (oxidative stress tolerance factor), isochorismatase hydrolase (potential plant defense suppressor) and tetrahydroxynaphthalene reductase (involved in melanin and microsclerotia formation) were isolated from both isolates and cloned. Sequence analysis of these genes showed many differences that may explain their differential expression in the two isolates. Given that some of the identified genes/proteins are potentially involved in overcoming and suppressing plant defense, phenolics were profiled in Kennebec-inoculated with Vd1396-9 or Vs06-14 isolate. Chlorogenic, caffeic, ferulic acids, cis-jasmone and rutin accumulation showed variations after inoculation. The results obtained from this study will help understanding the V. dahliae-potato interactions and develop efficient strategies to control Verticillium wilt disease.
72

Effect of green manures and organic amendments on Verticillium wilt of potato in Manitoba

Molina, Oscar Ivan 11 April 2011 (has links)
In Manitoba, potato fields have been found to be infested with Verticillium dahliae, which can produce Vertcillium wilt disease severity of up to 90% and reduce yield. Potato producers have then an increased interest on use of green manures and organic amendments to control Verticillium wilt. The objectives of this research were to evaluate selected green manure and organic amendments for their ability to reduce propagule density of V. dahliae in soil, incidence and severity of Verticillium wilt, and to enhance potato yield in Manitoba. In addition, a second study was conducted for the purpose of studying the potential of mustard green manure and seed meal to inhibit the germination of microsclerotia. Findings suggest that composted-cattle-manure and oriental mustard seed-meal amendments have promise as an alternative strategy for the control of V. dahliae. However, only composted beef cattle manure reduced disease, increased potato yield and improved nutrient availability (P) in soil
73

Estudios de patogenicidad y detección mediante PCR de Verticillium albo-atrum Reinke & Berth., en kiwi dorado (Actinidia chinensis Planch) cultivar Hort16A

Rubilar Rubilar, Mauricio Alejandro January 2010 (has links)
Memoria para optar al título profesional de: Ingeniero Agrónomo / El presente estudio se realizó con el objetivo de comprobar la patogenicidad de Verticillium albo-atrum, hongo asociado al decaimiento y muerte de plantas de kiwi dorado (Actinidia chinensis) cultivar Hort16A. Con este propósito plantas de Hort16A de un año de edad injertadas sobre Hayward (Actinidia deliciosa) se inocularon con una suspensión conidial de 106 conidias·ml -1. Al cabo de sesenta días, solamente las plantas inoculadas con V. alboatrum manifestaron síntomas de clorosis, marchitez y defoliación. Desde plantas con síntomas se recuperó en medio de cultivo Agar Agua y Agar Papa Dextrosa a V. alboatrum, identificado morfológicamente y mediante la amplificación del espacio intergénico entre los genes 18S y 28S que codifican para el RNA ribosomal del micelio del hongo. Desde tejido vegetal de plantas de kiwi dorado con síntomas se comprobó la presencia de V. albo-atrum utilizando la técnica de PCR anidado. Se realizó un estudio comparativo de la morfología y temperatura óptima de desarrollo entre V. albo-atrum y V. dahliae. Destacándose como la principal diferencia morfológica la presencia de hifas melanizadas en V. albo-atrum y la formación de microesclerocios en V. dahliae. La temperatura óptima de crecimiento para V. albo-atrum fue de 20°C y de 25°C para V. dahliae. / The objective of this study was to verify the pathogenicity of Verticillium albo-atrum, fungi associated with decline and death of gold kiwifruit (Actinidia chinensis) cultivar Hort16A. For this purpose Hort16A plants of one year old grafted on Hayward (Actinidia deliciosa) were inoculated with a suspension of 106 conidias·ml -1. After sixty days, only plants inoculated with V. albo-atrum showed symptoms of chlorosis, wilting and defoliation. The isolated fungus from symptomatic plant was recovered in water agar and potato dextrose agar medium and identified morphologically and by amplification of intergenic space between rRNA 18S and 28S coding genes of V. albo-atrum mycelium. From symptomatic plants tissue was detected the presence of V. albo-atrum using nested PCR. It was performed a comparative study of morphology and optimum temperature growth between V. albo-atrum and V. dahliae, being the main morphological difference the presence of melanized hiphae on V. albo-atrum and of microesclerotia on V. dahliae. The optimum growth temperature of V. albo-atrum and V. dahliae were 20°C and 25°C respectively.
74

Nondormant Alfalfa Varieties for Arizona 2017

Ottman, Mike 09 1900 (has links)
2 p. / Alfalfa varieties differ in fall dormancy, defined as growth during the fall. Nondormant alfalfa varieties are usually planted in mild winter areas for their ability to grow in the fall. However, fall growth of nondormant alfalfa may be undesirable in areas subject to repeated frosts or freezes. Nondormant, very nondormant, and extremely nondormant alfalfa varieties (fall dormancy class 8, 9, and 10) are adapted to elevations below 4000 feet in Arizona. Other dormancy classes not included in this publication are moderately nondormant varieties (fall dormancy class 7) which may be grown from 3000 to 5000 feet, and semi-dormant and dormant varieties (fall dormancy 6 and below) which are adapted to colder winter areas above 4000 feet.
75

Verticillium wilt of potato in South Africa

Millard, Cornelia Philipina 29 June 2005 (has links)
Since the first report of Verticillium wilt of potato in 1950, the disease has been considered to be of minor importance in South Africa. Between 1995 and 2000, however, Verticillium spp. were isolated from 146 samples of symptomatic potato plant material received from 13 of the 14 potato production areas in the country. Of 93 Verticillium isolates that were obtained, 60% were identified as V. dahliae and 8 % V. nigrescens. V. dahliae was present in nine of the regions and V. nigrescens in seven. Unidentified Verticillium species were isolated from six of the regions. Both V. dahliae and V. nigrescens were pathogenic to potato in vivo, with V. dahliae the more virulent of the two species. Ten South African potato cultivars, eight of which have recently been released, were evaluated over two seasons in a greenhouse for resistance to V. dahliae. The cultivars Aviva, BP1, Bravo, Buffelspoort, Caren, Hoevelder and Ropedi were classified as susceptible to Verticillium wilt, whereas Calibra, Dawn and Devlin were rated as very susceptible. No resistance or tolerance was evident. The efficacy of broccoli volatiles on in vitro mycelial growth of Verticillium dahliae, and the effect of incorporation of fresh and dry broccoli residues on the survival of microsclerotia of V. dahliae and infection of potato, were determined in the laboratory and greenhouse. Volatiles emanating from freshly harvested macerated broccoli leaves were inhibitory to mycelial growth of V. dahliae on medium. Fresh and dry residues incorporated into soil artificially infested with V. dahliae, significantly reduced the viability of microsclerotia of the pathogen and the rate of infection of potato plants. Dry residues were more effective than fresh residues in reducing the viability of sclerotia, but suppression of infection was independent of the state of the residues. / Dissertation (MSc (Plant Pathology))--University of Pretoria, 2005. / Microbiology and Plant Pathology / unrestricted
76

Genomweite Analyse der zellschichtspezifischen Expression in der Arabidopsis-Wurzel nach Inokulation mit pathogenen und mutualistischen Mikroorganismen / Genome-wide analysis of cell-type specific expressed genes in the Arabidopsis-root after inoculation with pathogenic and mutualistic microorganisms

Fröschel, Christian January 2019 (has links) (PDF)
Obwohl Pflanzenwurzeln mit einer Vielzahl von Pathogenen in Kontakt kommen, sind induzierbare Abwehrreaktionen der Wurzel bisher kaum beschrieben. Aufgrund der konzentrischen Zellschicht-Organisation der Wurzel wird angenommen, dass bei einer Immunantwort in jeder Zellschicht ein spezifisches genetisches Programm aktiviert wird. Eine Überprüfung dieser Hypothese war bisher wegen methodischen Limitierungen nicht möglich. Die zellschichtspezifische Expression Epitop-markierter ribosomaler Proteine erlaubt eine Affinitätsaufreinigung von Ribosomen und der assoziierten mRNA. Diese Methodik, als TRAP (Translating Ribosome Affinity Purification) bezeichnet, ermöglicht die Analyse des Translatoms und wurde dahingehend optimiert, pflanzliche Antworten auf Befall durch bodenbürtige Mikroorganismen in Rhizodermis, Cortex, Endodermis sowie Zentralzylinder spezifisch zu lokalisieren. Die Genexpression in der Arabidopsis-Wurzel nach Inokulation mit drei Bodenorganismen mit unterschiedlichen Lebensweisen wurde vergleichend betrachtet: Piriformospora indica kann als mutualistischer Pilz pflanzliches Wachstum und Erträge positiv beeinflussen, wohingegen der vaskuläre Pilz Verticillium longisporum für erhebliche Verluste im Rapsanbau verantwortlich ist und der hemibiotrophe Oomycet Phytophthora parasitica ein breites Spektrum an Kulturpflanzen befällt und Ernten zerstört. Für die Interaktionsstudien zwischen Arabidopsis und den Mikroorganismen während ihrer biotrophen Lebensphase wurden sterile in vitro-Infektionssysteme etabliert und mittels TRAP und anschließender RNA-Sequenzierung eine zellschichtspezifische, genomweite Translatomanalyse durchgeführt (Inf-TRAP-Seq). Dabei zeigten sich massive Unterschiede in der differentiellen Genexpression zwischen den Zellschichten, was die Hypothese der zellschichtspezifischen Antworten unterstützt. Die Antworten nach Inokulation mit pathogenen bzw. mutualistischen Mikroorganismen unterschieden sich ebenfalls deutlich, was durch die ungleichen Lebensweisen begründbar ist. Durch die Inf-TRAP-Seq Methodik konnte z.B. im Zentralzylinder der Pathogen-infizierten Wurzeln eine expressionelle Repression von positiven Regulatoren des Zellzyklus nachgewiesen werden, dagegen in den mit P. indica besiedelten Wurzeln nicht. Dies korrelierte mit einer Pathogen-induzierten Inhibition des Wurzelwachstums, welche nicht nach Inokulation mit P. indica zu beobachten war. Obwohl keines der drei Mikroorganismen in der Lage ist, den Zentralzylinder direkt zu penetrieren, konnte hier eine differentielle Genexpression detektiert werden. Demzufolge ist ein Signalaustausch zu postulieren, über den äußere und innere Zellschichten miteinander kommunizieren. In der Endodermis konnten Genexpressionsmuster identifiziert werden, die zu einer Verstärkung der Barriere-Funktionen dieser Zellschicht führen. So könnte etwa durch Lignifizierungsprozesse die Ausbreitung der Mikroorganismen begrenzt werden. Alle drei Mikroorganismen lösten besonders im Cortex die Induktion von Genen für die Biosynthese Trp-abhängiger, antimikrobieller Sekundärmetaboliten aus. Die biologische Relevanz dieser Verteilungen kann nun geklärt werden. Zusammenfassend konnten in dieser Dissertation erstmals die durch Mikroorganismen hervorgerufenen zellschichtspezifischen Antworten der pflanzlichen Wurzel aufgelöst werden. Vergleichende bioinformatische Analyse dieses umfangreichen Datensatzes ermöglicht nun, gezielt testbare Hypothesen zu generieren. Ein Verständnis der zellschichtspezifischen Abwehrmaßnahmen der Wurzel ist essentiell für die Entwicklung neuer Strategien zur Ertragssteigerung und zum Schutz von Nutzpflanzen gegen Pathogene in der Landwirtschaft. / Although plant roots are surrounded by a plethora of microorganisms, their interactions are poorly characterized on a molecular level. Due to the concentric organization of the root cell-layers, it is anticipated that these layers contribute to pathogen defense by providing specific genetically defined programs, which build up barriers to restrict infection. Because of methodical limitations, this theory was not confirmed, yet. Immunoprecipitation of cell-layer specific expressed epitope-tagged ribosomes allows an isolation of ribosome/mRNA complexes that subsequently can be analyzed. This approach is called “Translating Ribosome Affinity Purification” (TRAP). It was optimized to identify cell-layer specific induced defenses and to be combined with a system to inoculate plant roots directly with soil-born microorganisms. Hence, this method enables molecular dissection of infected Arabidopsis-roots to unravel expression patterns found in rhizodermis, cortex, endodermis and central cylinder, respectively. Comparative studies were performed with three species of microorganisms having different life-styles: On the one hand the beneficial fungus Piriformospora indica, that can promote plant growth and crop yield and on the other hand two pathogens with the vascular fungus Verticillium longisporum, causing damage in oilseed rape production and the hemibiotrophic Oomycet Phytophthora parasitica, which causes plant damage on many crop plants. After performing TRAP with infected roots, the cell-type specific mRNA was analyzed via RNA-Sequencing resulting in a genome-wide impression of differentially expressed genes (Inf-TRAP-Seq). Massive differences occurred among the cell-layers approving the theory of cell-type specific immune responses. Moreover the defense responses varied according to inoculation with pathogenic or beneficial microorganisms probably due to their life-style. For example by using the newly established Inf-TRAP-Seq approach it was shown that positive regulators of cell proliferation were expressionally repressed in central cylinder of pathogen-infected roots but not in P. indica colonized roots. This correlates with the observation that root growth is suppressed after inoculation with pathogens but not after inoculation with P. indica. Although none of the three microorganisms is able to penetrate the central cylinder, differentially expressed genes were detected in this layer suggesting an exchange of signals to enable communication between inner and outer layers. Expression patterns were identified in the endodermis, that could lead to reinforcement of barrier functions of this cell-layer for example by lignification-processes. By this means the propagation of the microorganisms is restricted. All three microorganisms elicited induction of genes involved in biosynthesis of Trp-derived secondary metabolites, especially in the cortex. Now the biological relevance of these distributions can be investigated additionally. Hence, within this thesis for the first time a cell-type specific resolution was obtained regarding defense responses in the Arabidopsis-root triggered by microorganisms. A huge dataset was generated. This can be analyzed extensively by bioinformatics and its applications to set up new hypotheses, which can be tested by further approaches. An understanding of cell-type defined root defense responses is essential to facilitate new strategies for protecting crop plants against pathogens and to increase crop yield in agriculture.
77

Host Plant Resistance in Strawberries to Anthracnose and Colonization of Crown and Root Tissue by Verticillium dahliae and Macrophomina phaseolina

Gonzalez-Benitez, Omar A 01 June 2020 (has links) (PDF)
Strawberries are considered an important crop in California where in 2018 it was in the top 5 valued fruit and vegetable commodities valued at $2.84 billion accounting for 88% of the total U.S. production. Strawberry production can be severely impacted by soilborne pathogens that can affect strawberry roots, crowns and leaves which can result in plant mortality. As much as 50 to 60% mortality can occur in one field. Pathogens responsible for such losses include Colletotrichum acutatum (syn.C. nymphaeae), Macrophomina phaseolina and Verticillium dahliae. With the phaseout of methyl bromide, host resistance and an understanding of host-pathogen interactions can play an important role in control of these diseases. A two-year study was conducted in order to evaluate host resistance of anthracnose in 105 cultivars and elite breeding lines developed by six strawberry breeding programs. Cultivars and elite breeding lines were inoculated using three local isolates in both years. All breeding programs provided genotypes that had a wide range of anthracnose susceptibility ranging from 0 to 100% mortality during both years. In both years an average of 78% of all the plant mortality occurred by 1 January. From the 105 cultivars and elite breeding lines, 30 cultivars were common to both years. Of these 30 cultivars, nine of them differed in their disease susceptibility between experiments by more than 20%. This suggests that several years of field evaluation may be necessary to determine susceptibility to anthracnose. Popular cultivars that represent the spectrum of susceptibility are Monterey (susceptible), Festival (moderately resistant), and Sensation (resistant). A second study was conducted toevaluate pathogen colonization of resistant and susceptible strawberry cultivars, testing interactions among crown and root plant tissue and two sampling timings. These cultivars were challenged with two soilborne pathogens, Macrophomina phaseolinaand Verticillium dahliae,over two years. Existing qPCR protocols for M. phaseolina and V. dahliae were used in order to quantify how much pathogen DNA was detected in crown and root samples. For the 2016-2017 V. dahliae trial there were significant effects for cultivar. Cultivar Benicia had significantly higher pathogen DNA compared to resistant cultivars Marquis, UC-12 and Camino Real. Susceptible cultivar BG 1975 had significantly less pathogen DNA compared to resistant cultivars San Andreas and Petaluma. In the 2017-2018 V. dahliaetrial pathogen DNA amount was not significantly different based on cultivar, plant part colonization, or the sampling period. In the 2017-2018 M. phaseolina trial all three of the fixed factors, cultivars, plant part colonization and sampling period were statistically significant. Cultivar ‘Sweet Ann’ had a significantly higher level of M. phaseolinaDNA in the early vs. the late sampling.
78

The Strawberry Rhizosphere Microbiome: Role on Plant Health and Nutrition

Boyd, Eric Michael 01 June 2020 (has links) (PDF)
Microbial-root associations are important to help plants cope with abiotic and biotic stressors. Managing these interactions offers an opportunity for improving the efficiency and sustainability of agricultural production. By characterizing the bacterial and archaeal community (via 16S rRNA sequencing) associated with the bulk and rhizosphere soil of sixteen strawberry cultivars in two controlled field studies, we explored the relationships between the soil microbiome and plant resistance to two soilborne fungal pathogens of strawberry (Verticillium dahliae and Macrophomina phaseolina). Overall, the plants had a distinctive rhizosphere microbiome relative to the bulk soil, with higher abundances of known beneficial bacteria such as Pseudomonads and Rhizobium. Plant genotype, biomass, leaf nutrient content and mortality were influenced differently by the rhizosphere microbiome in each of the two trials. In the V. dahliae trial, the rhizosphere microbiome was associated with plant biomass and leaf nutrient content and only indirectly to the disease resistance. In the M. phaseolina trial, the rhizosphere microbiome was associated to plant biomass, but not nutrient content; furthermore, resistant cultivars had larger abundances of Pseudomonas and Arthrobacter in their rhizosphere relative to susceptible cultivars. The mechanisms involved in these beneficial plant-microbial interactions and their plasticity in different environments should be studied further for the design of low-input disease management strategies.
79

An Integrated Approach for Controlling Verticillium Wilt of Strawberry

Koster, Jack T 01 September 2022 (has links) (PDF)
Strawberry (Fragaria x ananassa, Duch.) is an important crop in California, with more than 35,000 acres planted in 2018 resulting in a farm gate value of $3.1 billion. In 2020, California strawberry production accounted for more than 85% of national strawberry production and faces serious threats to production due to various soil-borne diseases. One such disease, Verticillium wilt, is caused by the fungal pathogen Verticillium dahliae and is commonly found in temperate zones around the world where strawberries are grown. Due to the phase-out of efficacious fumigants like methyl bromide, alternative disease management methods have become necessary to alleviate threats to production. Alternative fumigation practices such as crop termination have recently been investigated, and the integration of crop termination with bed fumigation and host resistance can play an integral role in control of Verticillium wilt. A field trial was established at California Polytechnic State University, San Luis Obispo to examine the efficacy of integrative management solutions for control of Verticillium wilt of strawberry in a naturally infested field. The efficacy of sequential fumigation applications of crop termination and bed fumigation was examined. Further, the integration of a resistant cultivar was also implemented in hopes of further decreasing plant mortality and increasing yield. Different fumigant products such as metam potassium, metam sodium, and chloropicrin were used to assess their performance in different fumigation applications. Metam potassium and metam sodium were used for crop termination. When used for crop termination, both products delivered significant reduction in soil inoculum density and adequate crop injury. Metam potassium, metam sodium, and chloropicrin were used for bed fumigation. All products reduced soil inoculum density. Lower plant mortality and higher yield resulted from sequential applications of crop termination and bed fumigation, with average plant mortality for non-treated control plots and sequentially fumigated plots being 67.2% and 24.1%, respectively. There were no significant increases in yield for plots bed fumigated and sequentially crop terminated and bed fumigated, but significant increases in yield for all plots treated versus the non-treated plots were found. The integration of a moderately resistant cultivar Valiant after the fumigation series showed lower mortality and higher yield versus a susceptible cultivar Seascape. A two-year study was also conducted in order to evaluate host resistance to Verticillium wilt in 74 cultivars and elite breeding lines from five strawberry breeding programs. Genotypes were established in a field naturally infested with V. dahliae on the campus farm at California Polytechnic State University, San Luis Obispo. All five breeding programs had a wide range of susceptibility to Verticillium wilt, ranging from 1.5% to 100% mortality for both years of the trial. Twenty-three cultivars and elite breeding lines were common to both years of the trial; of these, five cultivars showed vastly different results between the two years. For example, ‘Monterey’ showed 78.8% mortality in 2021 and 11.5% mortality in 2022. This demonstrates the importance of evaluating host resistance over multiple years under different environmental conditions and field locations.
80

Study of genes of the phytopathogenic fungus Verticillium longisporum involved in the colonization of xylem vessels of its host Brassica napus / Untersuchung von Genen des pflanzen pathogenen Pilzes Verticillium longisporum, die in die Kolonisation der Xylem gefäßen von der host Brassica napus involviert sind

Singh, Seema 22 January 2009 (has links)
No description available.

Page generated in 0.1271 seconds