• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 2
  • Tagged with
  • 13
  • 13
  • 13
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

3D Building Model Reconstruction from Very High Resolution Satellite Stereo Imagery

Partovi, Tahmineh 02 October 2019 (has links)
Automatic three-dimensional (3D) building model reconstruction using remote sensing data is crucial in applications which require large-scale and frequent building model updates, such as disaster monitoring and urban management, to avoid huge manual efforts and costs. Recent advances in the availability of very high-resolution satellite data together with efficient data acquisition and large area coverage have led to an upward trend in their applications for 3D building model reconstructions. In this dissertation, a novel multistage hybrid automatic 3D building model reconstruction approach is proposed which reconstructs building models in level of details 2 (LOD2) based on digital surface model (DSM) data generated from the very high-resolution stereo imagery of the WorldView-2 satellite. This approach uses DSM data in combination with orthorectified panchromatic (PAN) and pan-sharpened data of multispectral satellite imagery to overcome the drawbacks of DSM data, such as blurred building boundaries, rough building shapes unwanted failures in the roof geometries. In the first stage, the rough building boundaries in the DSM-based building masks are refined by classifying the geometrical features of the corresponding PAN images. The refined boundaries are then simplified in the second stage through a parameterization procedure which represents the boundaries by a set of line segments. The main orientations of buildings are then determined, and the line segments are regularized accordingly. The regularized line segments are then connected to each other based on a rule-based method to form polygonal building boundaries. In the third stage, a novel technique is proposed to decompose the building polygons into a number of rectangles under the assumption that buildings are usually composed of rectangular structures. In the fourth stage, a roof model library is defined, which includes flat, gable, half-hip, hip, pyramid and mansard roofs. These primitive roof types are then assigned to the rectangles based on a deep learning-based classification method. In the fifth stage, a novel approach is developed to reconstruct watertight parameterized 3D building models based on the results of the previous stages and normalized DSM (nDSM) of satellite imagery. In the final stage, a novel approach is proposed to optimize building parameters based on an exhaustive search, so that the two-dimensional (2D) distance between the 3D building models and the building boundaries (obtained from building masks and PAN image) as well as the 3D normal distance between the 3D building models and the 3D point clouds (obtained from nDSM) are minimized. Different parts of the building blocks are then merged through a newly proposed intersection and merging process. All corresponding experiments were conducted on four areas of the city of Munich including 208 buildings and the results were evaluated qualitatively and quantitatively. According to the results, the proposed approach could accurately reconstruct 3D models of buildings, even the complex ones with several inner yards and multiple orientations. Furthermore, the proposed approach provided a high level of automation by the limited number of primitive roof model types required and by performing automatic parameter initialization. In addition, the proposed boundary refinement method improved the DSM-based building masks specified by 8 % in area accuracy. Furthermore, the ridge line directions and roof types were detected accurately for most of the buildings. The combination of the first three stages improved the accuracy of the building boundaries by 70 % in comparison to using line segments extracted from building masks without refinement. Moreover, the proposed optimization approach could achieve in most cases the best combinations of 2D and 3D geometrical parameters of roof models. Finally, the intersection and merging process could successfully merge different parts of the complex building models.
12

Development and use of satellite-derived sea-surface temperature data for the nearshore North Pacific and Arctic Oceans : temperature pattern analysis and implications for climate change at ecoregional scale

Payne, Meredith C. 12 March 2012 (has links)
The quantification and description of sea surface temperature (SST) is critically important because it can influence the distribution, migration, and invasion of marine species; furthermore, SSTs are expected to be affected by climate change. Recent research indicates that there has been a warming trend in ocean temperatures over the last 50 years. Hence, we sought to identify and demonstrate how a particularly germane SST dataset can be used within the scope of global climate change research. For this project we assembled a 29-year nearshore time series of mean monthly SSTs along the North Pacific coastline, as well as mean monthly SSTs for ice-free regions of the Arctic, using remotely-sensed satellite data collected with the Advanced Very High Resolution Radiometer (AVHRR) instrument. By providing detailed information concerning both dataset generation and data limitations, we aimed to make these data comprehensible to an expanded audience concentrating on life sciences rather than the traditionally physical science-based community. Furthermore, by making these data freely and publically available in multiple formats, including GIS (geographic information systems) layers, we expand their visibility and the extent of their use. We then used the dataset to describe SST patterns of nearshore (< 20 km offshore) regions of 16 North Pacific ecoregions, and of ice-free regions of 20 Arctic ecoregions, as delineated by the Marine Ecoregions of the World (MEOW) hierarchical schema. Our work creates a better understanding of present temperature regimes in these critically sensitive areas, from which we can draw several basic conclusions. 1) AVHRR SST measurements alone are sufficient to identify temperature patterns pertinent to determining health of ecosystems; 2) Within the nearshore North Pacific, ecoregions along the California Current System are most vulnerable to habitat-altering SST changes; 3) sea ice distribution is a major factor affecting SSTs in Arctic ecoregions, causing concern for the welfare of Arctic species. / Graduation date: 2012
13

Linear and segmented linear trend detection for vegetation cover using GIMMS normalized difference vegetation index data in semiarid regions of Nigeria

Osunmadewa, Babatunde A., Wessollek, Christine, Karrasch, Pierre 06 September 2019 (has links)
Quantitative analysis of trends in vegetation cover, especially in Kogi state, Nigeria, where agriculture plays a major role in the region’s economy, is very important for detecting long-term changes in the phenological behavior of vegetation over time. This study employs the use of normalized difference vegetation index (NDVI) [global inventory modeling and mapping studies 3g (GIMMS)] data from 1983 to 2011 with detailed methodological and statistical approach for analyzing trends within the NDVI time series for four selected locations in Kogi state. Based on the results of a comprehensive study of seasonalities in the time series, the original signals are decomposed. Different linear regression models are applied and compared. In order to detect structural changes over time a detailed breakpoint analysis is performed. The quality of linear modeling is evaluated by means of statistical analyses of the residuals. Standard deviations of the regressions are between 0.015 and 0.021 with R2 of 0.22–0.64. Segmented linear regression modeling is performed for improvement and a decreasing standard deviation of 33%–40% (0.01–0.013) and R2 up to 0.82 are obtained. The approach used in this study demonstrates the added value of long-term time series analyses of vegetation cover for the assessment of agricultural and rural development in the Guinea savannah region of Kogi state, Nigeria.

Page generated in 0.076 seconds