Spelling suggestions: "subject:"vibrationstest"" "subject:"vibrationstests""
1 |
Repeatability of Additive Manufactured PartsTollander, Sofia, Kouach, Mona January 2017 (has links)
Saab Surveillance in Järfä̈lla constructs complex products, such as radars and electronic support measures. Saab sees an advantage in manufacturing details with additive manufacturing as it enables a high level of complexity. Additive manufacturing is relatively new in the industry and consequently there are uncertainties regarding the process. The purpose of this bachelor thesis was to improve the knowledge of the repeatability of additive manufactured parts as well as compare additive manufactured test rods in two different directions, horizontally and vertically, to subtractive manufactured test rods with a vibration test. The vibration test was conducted to simulate the operative environment where the additive manufactured parts might be implemented in the future. Before the vibration test could be performed, the test rods were designed in a 3D-modeling program and analysed with a finite element method to achieve the required natural frequency range of 100 - 200 Hz and a maximal bending stress of 60 - 80 MPa in the notched area of the test rod. It was concluded that the subtractive manufactured test rods had the highest repeatability. The horizontally additive manufactured test rods had a higher repeatability than the vertically additive manufactured test rods, but the vertically additive manufactured test rods had the highest overall strength. It was also concluded that more studies are needed to ensure that additive manufactured parts can be produced with high repeatability while maintaining the structural integrity. / Saab Surveillance i Järfä̈lla konstruerar komplexa försvarsprodukter som till exempel radarsystem. Additiv tillverkning i metall möjliggör tillverkning av produkter med hög komplexitet, men då tillverkningsprocessen är relativt ny i industrin finns det en stor osäkerhet kring processen. Syftet med detta kandidatexamensarbete var att få en bättre förståelse för repeterbarheten hos additivt tillverkade delar samt att jämföra additivt tillverkade provstavar konstruerade i två olika riktningar, horisontellt och vertikalt, med svarvade provstavar med hjälp av ett vibrationstest. Vibrationstestet genomfördes för att simulera den operativa miljön där de additivt tillverkade detaljerna skulle kunna implementeras i framtiden. Innan vibrationstestet kunde utföras simulerades provstavarnas design i en mjukvara för 3D-modellering. En finit element-analys utfördes även fö̈r att få en egenfrekvens inom intervallet 100 - 200 Hz och en maximal böjspänning mellan 60 - 80 MPa i anvisningen på provstaven. Slutsatsen drogs att de traditionellt bearbetade stavarna hade den högsta repeterbarheten. De horisontellt additivt tillverkade stavarna hade högre repeterbarhet än de vertikalt additivt tillverkade stavarna, men att de vertikalt additivt tillverkade stavarna hade ett längre utmattningsliv. Det kunde även konstateras att fler studier inom ämnet behövs för att kunna säkerställa repeterbarheten hos additivt tillverkade delar utan att behöva kompromissa med hållfastheten.
|
2 |
Wind-induced vibrations in tall timber buildings : Design standards, experimental and numerical modal analysesLandel, Pierre January 2022 (has links)
Climate change and densification of cities are two major global challenges. Inthe building and construction industry, there are great expectations that tall timberbuildings will constitute one of the most sustainable solutions. First, verticalurban growth is energy and resource-efficient. Second, forest-based productsstore carbon and have one of the highest mechanical strength to density ratios.If the structural substitution of concrete and steel with wood in high-rise buildingsawakens fears of fire safety issues, engineers and researchers are particularlyworried about the dynamic response of the trendy tall timber buildings.Indeed, due to the low density of wood, they are lighter, and for the same height,they might be more sensitive to wind-induced vibrations than traditional buildings.To satisfy people’s comfort on the top floors, the serviceability design oftall timber buildings must consider wind-induced vibrations carefully. Architectsand structural engineers need accurate and verified calculation methods,useful numerical models and good knowledge of the dynamical properties oftall timber buildings. Firstly, the research work presented hereby attempts to increase the understandingof the dynamical phenomena of wind-induced vibration in tall buildings andevaluate the accuracy of the semi-empirical models available to estimate alongwindaccelerations in buildings. Secondly, it aims at, experimentally and numerically,studying the impact of structural parameters – masses, stiffnesses anddamping – on the dynamics of timber structures. Finally, it suggests how talltimber buildings can be modeled to correctly predict modal properties and windinducedresponses. This research thesis confirms the concerns that timber buildings above 15-20stories are more sensitive to wind excitation than traditional buildings with concreteand steel structures, and solutions are proposed to mitigate this vibrationissue. Regarding the comparison of models from different standards to estimatewind-induced accelerations, the spread of the results is found to be very large.From vibration tests on a large glulam truss, the connection stiffnesses are foundto be valuable for predicting modal properties, and numerical reductions withsimple spring models yield fair results. Concerning the structural models of conceptualand real tall timber buildings, numerical case studies emphasize the importanceof accurately distributed masses and stiffnesses of structural elements,connections and non-structural building parts, and the need for accurate dampingvalues. / Klimatförändringar och förtätning av städer är två stora globala utmaningar. Inom bygg- och anläggningsbranschen finns det stora förväntningar på att höga trähus ska utgöra en av de mest hållbara lösningarna. Dels är vertikal förtätning i städer energi- och resurseffektiv, dels lagrar skogsbaserade produkter kol och har dessutom ett av de högsta förhållanden mellan mekanisk styrka och densitet. Om den strukturella ersättningen av stål och betong med trä i höghus väcker farhågor ur brandsäkerhetssynpunkt, är ingenjörer och forskare särskilt oroliga för den dynamiska responsen i de trendiga högre trähusen. På grund av träets låga densitet blir de lättare, och för samma höjd kan de vara känsligare för vindinducerade vibrationer än traditionella byggnader. För att tillfredsställa människors komfort på de översta våningarna måste projektören av höga trähus noga överväga vindinducerade vibrationer i bruksgränstillstånd. Arkitekter och byggnadsingenjörer behöver noggranna och verifierade beräkningsmetoder, användbara numeriska modeller och goda kunskaper om höga träbyggnaders dynamiska egenskaper. För det första avser detta forskningsarbete att öka förståelsen för den dynamiska effekten av vindinducerade vibrationer i höga byggnader och utvärdera noggrannheten hos de semi-empiriska modeller som finns tillgängliga för att uppskatta byggnadens accelerationer i vindriktningen. För det andra syftar det till att, experimentellt och numeriskt, studera effekterna av strukturella parametrar – massor, styvheter och dämpning – på träkonstruktioners dynamik. Slutligen undersöks hur höga träbyggnader kan modelleras för att korrekt förutsäga modala egenskaper och vindinducerade respons. Denna forskningsuppsats bekräftar farhågorna om att träbyggnader över 15-20 våningar är mer känsliga för vindexcitation än vanliga byggnader med betong- och stålstomme. Några lösningar föreslås för att mildra detta vibrationsproblem. När det gäller jämförelsen av modeller från olika standarder för att beräkna vindinducerade accelerationer visar sig spridningen av resultaten vara mycket stor. Från tester på ett stort limträfackverk visar sig förbandsstyvheterna vara viktiga för att förutsäga modala egenskaper och numeriska reduktioner med enkla fjädermodeller ger rättvisande resultat. När det gäller de strukturella modellerna av konceptuella och verkliga höga träbyggnader, betonar numeriska fallstudier vikten av exakt fördelade massor och styvheter hos byggnadselement, förband och icke-strukturella byggnadsdelar, samt behovet av exakta dämpningsvärden. / Le changement climatique et la densification des villes sont deux défis mondiaux majeurs. Dans le domaine de la construction, les bâtiments en bois de grande hauteur sont perçus comme l'une des solutions les plus durables. D'une part la croissance urbaine verticale est économe en énergie et en ressources, d'autre part les produits forestiers stockent le carbone et ont l'un des rapports résistance mécanique/densité les plus élevés. Si la substitution structurelle du bois au béton ou à l’acier dans les immeubles de grande hauteur suscite des craintes pour les problèmes de sécurité incendie, les ingénieurs et les chercheurs s'inquiètent particulièrement de la réponse dynamique des immeubles en bois de grande hauteur à la mode. En effet, du fait de la faible densité du bois, ils sont plus légers, et à hauteur égale, ils pourraient être plus sensibles aux vibrations induites par le vent que les immeubles traditionnels. Pour satisfaire le confort des personnes aux étages supérieurs, la conception des bâtiments en bois de grande hauteur doit tenir compte judicieusement des vibrations induites par le vent. Les architectes et les ingénieurs en structure ont besoin de méthodes de calcul précises et vérifiées, de modèles numériques utiles et d'une bonne connaissance des propriétés dynamiques des bâtiments en bois de grande hauteur. Premièrement, les travaux de recherche présentés ici tentent d’approfondir la compréhension des phénomènes dynamiques des vibrations induites par le vent dans les immeubles de grande hauteur et d'évaluer la précision des modèles semi-empiriques disponibles pour calculer les accélérations dans la direction du vent. Deuxièmement, ils visent à étudier expérimentalement et numériquement les impacts des paramètres structuraux – masses, rigidités et amortissements – sur la dynamique des structures bois. Finalement, ils suggèrent comment modéliser les bâtiments en bois de grande hauteur pour prédire correctement les propriétés modales et les réponses induites par le vent. Cette thèse de recherche confirme les inquiétudes selon lesquelles les bâtiments en bois de plus de 15-20 étages sont plus sensibles à l'excitation du vent que les bâtiments traditionnels en béton armé ou en acier, et des solutions sont proposés pour atténuer ce problème vibratoire. Concernant la comparaison de différentes méthodes normalisées pour estimer les accélérations induites par le vent, la grande dispersion des résultats n'est pas négligeable. À partir d'essais expérimentaux sur un grand poteau-treillis en lamellé-collé, les rigidités de connexion s’avèrent importantes pour prédire les propriétés modales et les réductions numériques avec de simples modèles à ressort donnent des résultats acceptables. Concernant la précision des modèles structuraux de bâtiments en bois de grande hauteur conceptuels ou réels, des études de cas numériques soulignent l'importance des répartitions exactes des masses et des rigidités des éléments structuraux, des connexions et des éléments de construction non structuraux, ainsi que la nécessité de valeurs d'amortissement précises.
|
Page generated in 0.1053 seconds