Spelling suggestions: "subject:"virus assembly"" "subject:"dirus assembly""
21 |
Cytoplasmic Localization of HIV-1 Vif Is Necessary for Apobec3G Neutralization and Viral Replication: A DissertationFarrow, Melissa Ann 05 May 2005 (has links)
The binding of HIV-1 Vif to the cellular cytidine deaminase Apobec3G and subsequent prevention of Apobec3G virion incorporation have recently been identified as critical steps for the successful completion of the HIV-1 viral life cycle. This interaction occurs in the cytoplasm where Vif complexes with Apobec3G and directs its degradation via the proteasome pathway or sequesters it away from the assembling virion, thereby preventing viral packaging of Apobec3G.
While many recent studies have focused on several aspects of Vif interaction with Apobec3G, the subcellular localization of Vif and Apobec3G during the viral life cycle have not been fully considered. Inhibition of Apobec3G requires direct interaction of Vif with Apobec3G, which can only be achieved when both proteins are present in the same subcellular compartment.
In this thesis, a unique approach was utilized to study the impact of Vif subcellular localization on Vif function. The question of whether localization could influence function was brought about during the course of studying a severely attenuated viral isolate from a long-term non-progressor who displayed a remarkable disease course. Initial observations indicated that this highly attenuated virus contained a mutant Vif protein that inhibited growth and replication. Upon further investigation, it was found that the Vif defect was atypical in that the mutant was fully functional in in vitro assays, but that it was aberrantly localized to the nucleus in the cell. This provided the basis for the study of Vif localization and its contribution to Vif function.
In addition to the unique Vif mutant that was employed, while determining the localization and replication phenotypes of the differentially localized Vif proteins, a novel pathway for Vif function was defined. Copious publications have recently defined the mechanism for Vif inhibition of Apobec3G. Vif is able to recruit Apobec3G into a complex that is targeted for degradation by the proteasome. However, this directed degradation model did not fully explain the complete neutralization of Apobec3G observed in cell culture. Other recent works have proposed the existence of a second, complementary pathway for Vif function. This pathway is defined here as formation of an aggresome that prevents Apobec3G packaging by binding and sequestering Apobec3G in a perinuclear aggregate. This second mechanism is believed to work in parallel with the already defined directed degradation pathway to promote complete exclusion of Apobec3G from the virion.
The data presented here provide insight into two areas of HIV research. First, the work on the naturally occurring Vif mutant isolated from a long-term non-progress or confirms the importance of Vif in in vivo pathogenesis and points to Vif as a potentially useful gene for manipulation in vaccine or therapy design due to its critical contributions to in vivo virus replication. Additionally, the work done to address the subcellular localization of Vif led to the proposal of a second pathway for Vif function. This could have implications in the field of basic Vif research in terms of completely understanding and defining the functions of Vif. Again, a more complete knowledge about Vif can help in the development of novel therapies aimed at disrupting Vif function and abrogating HIV-1 replication.
|
22 |
Structural Studies on SeMV Chimeras and TSV : Insights into Capsid AssemblyGulati, Ashutosh January 2015 (has links) (PDF)
Assembly of virus capsid protein (CP) into icosahedrally symmetric particles is an intriguing and elegant process. In most cases of virus assembly, a large number of identical protein subunits self-assemble to generate a shell that protects the viral genome. Studies on virus assembly have resulted in a new scientific technique that uses these proteinaceous shells as nano-particles for a variety of biological applications. The current thesis deals with understanding the factors that govern the assembly of the Sesbania mosaic virus (SeMV) and a pleomorphic virus, Tobacco streak virus (TSV).
CP of SeMV, a T=3 plant virus, consists of a disordered N-terminal R-domain and an ordered S-domain. The importance of the R-domain in the assembly was probed by replacement with polypeptides such as the B-domain of Staphylococcus aureus protein A and polypeptides P10 and P8 of SeMV. These chimera assembled into T=3 or larger virus like particles (VLPs). Addition of divalent cations resulted in the formation of heterogeneous nucleoprotein complexes that disappeared upon treatment with EDTA/RNAse. One of the chimeras (N∆65-B) purified in a dimeric form by affinity chromatography assembled into T=1 VLPs during crystallization. The three dimensional structure of these VLPs showed that they were devoid of divalent ions and the B-domain was disordered. These studies demonstrate the importance of N-terminal residues, metal ions in virus assembly and robustness of the assembly process. Also, the B-domain was functional in N∆65-B VLPs, suggesting possible biotechnological applications.
Tobacco streak virus (TSV) is a polymorphic virus and a major plant pathogen. TSV capsids encapsidate the tri-partite ss-RNA genome of the virus in three spheroidal particles of diameters 27, 30 and 33 nm, respectively. CPs of ilarviruses are also involved in genome activation. The labile nature of ilarviruses has posed difficulties in their structure determination. This thesis describes the first crystal structure of truncated TSV-CP. The core of TSV CP conforms to the canonical β-barrel jelly roll tertiary structure found in other viral coat proteins. Dimers of CP with swapped C-terminal arms (C-arm) were observed in the two crystal structures determined. The C-arm was found to be flexible and responsible for the polymorphic and pleomorphic nature of TSV capsids. Mutations in the hinge region of the C-arm that reduce the flexibility resulted in the formation of more uniform particles. TSV CP was also found to be structurally similar to that of Alfalfa mosaic virus (AMV) accounting for similar mechanism of genome activation in alfamo and ilar viruses.
|
23 |
Role of Host Cellular Membrane Raft Domains in the Assembly and Release of Newcastle Disease Virus: A DissertationLaliberte, Jason P. 01 April 2008 (has links)
Newcastle disease virus (NDV) belongs to the Paramyxoviridae, a family of enveloped RNA viruses that includes many important human and animal pathogens. Although many aspects of the paramyxovirus life cycle are known in detail, our understanding of the mechanisms regulating paramyxovirus assembly and release are poorly understood. For many enveloped RNA viruses, it has recently become apparent that both viral and host cellular determinants coordinate the proper and efficient assembly of infectious progeny virions.
Utilizing NDV as a model system to explore viral and cellular determinants of paramyxovirus assembly, we have shown that host cell membrane lipid raft domains serve as platforms of NDV assembly and release. This conclusion was supported by several key experimental results, including the exclusive incorporation of host cell membrane raftassociated molecules into virions, the association of structural components of the NDV particle with membrane lipid raft domains in infected cells and the strong correlation between the kinetics of viral protein dissociation from membrane lipid raft domains and incorporation into virions. Moreover, perturbation of infected cell membrane raft domains during virus assembly resulted in the disordered assembly of abnormal virions with reduced infectivity. These results further established membrane raft domains as sites of virus assembly and showed the integrity of these domains to be critical for the proper assembly of infectious virions.
Although specific viral protein-protein interactions are thought to occur during paramyxovirus assembly, our understanding of how these interactions are coordinated is incomplete. While exploring the mechanisms underlying the disordered assembly of non-infectious virions in membrane raft-perturbed cells, we determined that the integrity of membrane raft domains was critical in the formation and virion incorporation of a complex consisting of the NDV attachment (HN) and fusion (F) proteins. The reduced virus-to-cell membrane fusion capacity of particles released from membrane raft-perturbed cells was attributed to an absence of the HN – F glycoprotein-containing complex within the virion envelope. This result also correlated with a reduction of these glycoprotein complexes in membrane lipid raft fractions of membrane raft-perturbed cells. Specifically, it was determined that the formation of newly synthesized HN and F polypeptides into the glycoprotein complex destined for virion incorporation was dependent on membrane lipid raft integrity.
Finally, a novel virion complex between the ribonucleoprotein (RNP) structure and the HN attachment protein was identified and characterized. Unlike the glycoprotein complex, the detection of the RNP – HN protein-containing complex was not affected by membrane raft perturbation during virus assembly in the cell. The biological importance of this novel complex for the proper assembly of an infectious progeny virion is currently under investigation.
The results presented in this thesis outline the role of host cell membrane lipid raft domains in the assembly and release processes of a model paramyxovirus. Furthermore, the present work extends our understanding of how these particular host cell domains mechanistically facilitate the ordered assembly and release of an enveloped RNA virus.
|
24 |
Requirements for Assembly and Release of Newcastle Disease Virus-Like Particles: A DissertationPantua, Homer Dadios 26 October 2006 (has links)
The final step of paramyxovirus infection requires the assembly of viral structural components at the plasma membrane of infected cells followed by budding of virions. While the matrix (M) protein of some paramyxoviruses has been suggested to play a central role in the assembly and release of virus particles, the specific viral and host protein requirements are still unclear. Using Newcastle disease virus (NDV) as a prototype paramyxovirus, we explored the role of each of the NDV structural proteins in virion assembly and release. For these studies, we established a virus-like particle (VLP) system for NDV. The key viral proteins required for particle formation and the specific viral protein-protein interactions required for assembly and release of particles were explored in chapter 2. First we found that co-expression of all four proteins resulted in the release of VLPs with densities and efficiencies of release (1.18 to 1.16 g/cm3and 83.8%±1.1, respectively) similar to that of authentic virions. Expression of M protein alone, but not NP, F-K115Q or HN proteins individually, resulted in efficient VLP release. No combination of proteins in the absence of M protein resulted in particle release. Expression of any combination of proteins that included M protein yielded VLPs, although with different densities and efficiencies of release.
To address the roles of NP, F and HN proteins in VLP assembly, the interactions of proteins in VLPs formed with different combinations of viral proteins were characterized by co-immunoprecipitation. The co-localization of M protein with cell surface F and HN proteins in cells expressing all combinations of viral proteins was characterized. Taken together, the results show that M protein is necessary and sufficient for NDV budding. Furthermore, they suggest that M protein – HN protein and M protein - NP interactions are responsible for incorporation of HN protein and NP proteins into VLPs and that F protein is incorporated indirectly due to interactions with NP and HN protein.
Since the vacuolar protein sorting (VPS) system is involved in the release of several enveloped RNA viruses, chapter 3 describes studies which explored the role of the VPS system on NDV particle release. First, we characterized the effects of three dominant negative mutant proteins of the VPS pathway on particle release. Expression of dominant negative mutants of CHMP3, Vps4 and AIP1 proteins inhibited M protein particle release as well as release of complete VLPs. Mutation of a YANL sequence in the NDV M protein to AANA inhibited particle release while replacement of this sequence with either of the classical late domain motifs, PTAP or YPDL, completely restored particle release. The host protein AIP1, which binds YXXL late domain sequences, is incorporated into M protein particles. These results suggest that an intact VPS pathway is necessary for NDV VLP release and that the YANL sequence is an NDV M protein L domain.
The sequence and structure of the Newcastle disease virus (NDV) fusion (F) protein are consistent with its classification as a type 1 glycoprotein. We have previously reported, however, that F protein can be detected in at least two topological forms with respect to membranes in both a cell-free protein synthesizing system containing membranes as well as infected COS-7 cells (J. Virol. 2004 77:1951). One form is the classical type 1 glycoprotein while the other is a polytopic form in which approximately 200 amino acids of the amino terminal end as well as the cytoplasmic domain (CT) are translocated across membranes. Furthermore, we detected CT sequences on surfaces of F protein expressing cells and antibodies specific for these sequences inhibited red blood cell fusion to HN and F protein expressing cells suggesting a role for surface expressed CT sequences in cell-cell fusion. In chapter 4, we extended these findings and found that the alternate form of the F protein can also be detected in infected and transfected avian cells, the natural host cells of NDV. Furthermore, the alternate form of F protein was also found in virions released from both infected COS-7 cells and avian cells by Western analysis. Mass spectrometry confirmed its presence in virions released from avian cells. Two different polyclonal antibodies raised against sequences of the CT domain of the F protein slowed plaque formation in both avian and COS-7 cells. Antibody specific for the CT domain also inhibited single cycle infections as detected by immunofluorescence of viral proteins in infected cells. The potential roles of this alternate form of the NDV F protein in infection are discussed.
Virus-like particles (VLPs) generated from different viruses have been shown to have potential as good vaccines. Chapter 5 explored the potential of NDV VLPs as a vaccine for NDV or as a vaccine vector for human pathogens. Significant quantities of NDV VLPs can be produced from tissue culture cells. These VLPs are as pure as virions prepared in eggs. In addition, some rules for incorporation of viral proteins into VLPs were also explored. We found that the cytoplasmic domain of the fusion (F) protein is necessary for its incorporation into VLPs. We found that an HN protein with an HA tag at its carboxyl terminus was incorporated into VLPs. We also found that the HN and F proteins of NDV, strain B1, can be incorporated into VLPs with M and NP of strain AV. The demonstration of specific domains required for protein incorporation into particles is important in using NDV VLPs as a vaccine vector for important human pathogens.
In conclusion, this dissertation presents results that show that the M protein plays a central role in NDV assembly and release, a finding that is consistent with findings with other paramyxoviruses. More importantly, this work extends the current knowledge of paramyxovirus assembly and release by providing the first direct evidence of interactions between paramyxovirus proteins. These interactions between viral proteins provide a rational basis for incorporation of viral proteins into particles. This work also provides a clearer understanding of the role of the host vacuolar protein sorting machinery in NDV budding. A clear understanding of virus assembly and budding process contributes to the design of strategies for therapeutic intervention and in the development of safer, more economical and effective vaccines.
|
25 |
<b>Evaluating the role of the Ebola virus (EBOV) matrix protein (VP40) surface charge and host cell calcium levels on EBOV plasma membrane assembly and budding.</b>Balindile Bhekiwe Motsa (18426324) 24 April 2024 (has links)
<p dir="ltr">The Ebola virus (EBOV) is a filamentous RNA virus which causes severe hemorrhagic fever. It is one of the most dangerous known pathogens with a high fatality rate. Multiple outbreaks of EBOV have occurred since the 1970s with the most widespread outbreak starting in December 2013. This outbreak continued through May of 2016 and had a fatality rate of approximately 50%. EBOV outbreaks are recurrent because the virus is still present in animal reservoirs. Despite multiple EBOV outbreaks we still lack a clear understanding of how new viral particles are formed and spread through virus assembly and release. Given the widespread global travel, EBOV now poses a threat to the entire world. EBOV encodes for the matrix protein, VP40, which is one of the most conserved viral proteins. VP40 can form different structures leading to different functions of the protein in different stages of the EBOV life cycle. The VP40 dimer traffics to the inner leaflet of the plasma membrane to facilitate assembly and budding. The VP40 octameric ring has been implicated in transcriptional regulation. This thesis focuses on understanding in further detail the determinates of VP40 plasma membrane assembly and exit from an infected cell.</p><p dir="ltr">The assembly and trafficking of VP40 to the plasma membrane requires a network of protein-protein and lipid-protein interactions (PPIs and LPIs). Studying these interfaces is important for understanding how VP40 structure and function regulates trafficking and assembly and can shed light on therapeutic strategies to target EBOV. The alteration of host cell Ca<sup>2+</sup> levels is one of the strategies that viruses use to perturb the host cell signaling transduction mechanism in their favor. Evidence has emerged demonstrating that Ca<sup>2+</sup> is important for the assembly and budding of EBOV in a VP40-dependent manner. The relationship between intracellular Ca<sup>2+</sup> levels and EBOV matrix protein VP40 function is still unknown. In this work we utilize biophysical techniques to study the role of LPIs and intracellular Ca<sup>2+</sup> on VP40 dynamics at the plasma membrane and key residues for assembly and budding. This work highlights the sensitivity of slight electrostatic changes on the VP40 surface for assembly and budding and a critical interaction between Ca<sup>2+</sup> and the VP40 dimer that are important for lipid binding at the plasma membrane.</p>
|
26 |
Étude de la sortie du virus herpès simplex de type 1 (HSV 1) hors du noyauRémillard-Labrosse, Gaudeline 09 1900 (has links)
Le virus herpès simplex de type 1 (HSV 1) affecte la majorité de la population mondiale. HSV 1 cause de multiples symptômes délétères dont les plus communs sont les lésions orofaciales usuellement appelées feux sauvages. Le virus peut aussi causer des effets plus sérieux comme la cécité ou des troubles neurologiques. Le virus réside de façon permanente dans le corps de son hôte. Malgré l’existence de nombreux traitements pour atténuer les symptômes causés par HSV 1, aucun médicament ne peut éliminer le virus. Dans le but d’améliorer les connaissances concernant le cycle viral de HSV 1, ce projet cible l’étude du transport du virus dans la cellule hôte. Ce projet aura permis la collecte d’informations concernant le modus operandi de HSV 1 pour sortir des compartiments cellulaires où il séjourne. Les différentes expérimentations ont permis de publier 3 articles dont un article qui a été choisi parmi les meilleurs papiers par les éditeurs de « Journal of Virology » ainsi qu’un 4e article qui a été soumis.
Premièrement, un essai in vitro reproduisant la sortie de HSV 1 du noyau a été mis sur pied, via l’isolation de noyaux issus de cellules infectées. Nous avons démontré que tout comme dans les cellules entières, les capsides s’évadent des noyaux isolés dans l’essai in vitro en bourgeonnant avec la membrane nucléaire interne, puis en s’accumulant sous forme de capsides enveloppées entre les deux membranes nucléaires pour finalement être relâchées dans le cytoplasme exclusivement sous une forme non enveloppée. Ces observations appuient le modèle de transport de dé-enveloppement/ré-enveloppement.
Deuxièmement, dans le but d’identifier des joueurs clefs viraux impliqués dans la sortie nucléaire du virus, les protéines virales associées aux capsides relâchées par le noyau ont été examinées. La morphologie multicouche du virus HSV 1 comprend un génome d’ADN, une capside, le tégument et une enveloppe. Le tégument est un ensemble de protéines virales qui sont ajoutées séquentiellement sur la particule virale. La séquence d’ajout des téguments de même que les sites intracellulaires où a lieu la tégumentation sont l’objet d’intenses recherches. L’essai in vitro a été utilisé pour étudier cette tégumentation. Les données recueillies suggèrent un processus séquentiel qui implique l’acquisition des protéines UL36, UL37, ICP0, ICP8, UL41, UL42, US3 et possiblement ICP4 sur les capsides relâchées par le noyau.
Troisièmement, pour obtenir davantage d’informations concernant la sortie de HSV 1 des compartiments membranaires de la cellule hôte, la sortie de HSV 1 du réseau trans golgien (TGN) a aussi été étudiée. L’étude a révélé l’implication de la protéine kinase D cellulaire (PKD) dans le transport post-TGN de HSV 1. PKD est connue pour réguler le transport de petits cargos et son implication dans le transport de HSV 1 met en lumière l’utilisation d’une machinerie commune pour le transport des petits et gros cargos en aval du TGN. Le TGN n’est donc pas seulement une station de triage, mais est aussi un point de rencontre pour différentes voies de transport intracellulaire.
Tous ces résultats contribuent à une meilleure compréhension du processus complexe de maturation du virus HSV 1, ce qui pourrait mener au développement de meilleurs traitements pour combattre le virus. Les données amassées concernant le virus HSV 1 pourraient aussi être appliquées à d’autres virus. En plus de leur pertinence dans le domaine de la virologie, les découvertes issues de ce projet apportent également de nouveaux détails au niveau du transport intracellulaire. / Herpes simplex virus type 1 (HSV 1) affects the majority of the world population. HSV 1 causes various deleterious symptoms with the most common being facial mucosal lesions usually named cold sores. The virus can also contribute to more serious effects such as corneal blindness and neurological problems. The virus is permanently residing in the host body. Despite the existence of several treatments against HSV 1 symptoms, no drug is able to eliminate the virus. In order to improve knowledge of the viral cycle of HSV 1, this project focuses on the transport of the virus in the host cell. During this project we collect data to detail the modus operandi used by HSV 1 to leave cellular compartments such as the nucleus and the TGN. The different experimentations achieved during this PhD allowed the publication of three articles, including one selected as worthy of note by the editors of “Journal of virology” and a fourth article that has been submitted.
Firstly, an in vitro assay that reproduces the exit of HSV 1 virus from nuclei was established via the isolation of nuclei from infected cells. We found that, as in intact cells, capsids escaped the isolated nuclei in the in vitro assay by budding through the inner nuclear membrane, accumulated as enveloped capsids between the two nuclear membranes, and were released in cytoplasm exclusively as unenveloped capsids. These observations support the de-envelopment / re-envelopment model of transport.
Secondly, to identify viral players implicated in the nuclear egress of HSV 1, viral proteins associated with nuclear released capsids were investigated. HSV 1 has a multilayered morphology that includes a DNA genome, a capsid, a tegument and an envelope. The tegument represents viral proteins added sequentially on the viral particle. The sequential order and intracellular compartments where the tegument is added are the subject of intense research. The in vitro assay was used to investigate this tegumentation process. The acquired data suggest a sequential process that involved the acquisition of viral proteins UL36, UL37, ICP0, ICP8, UL41, UL42, US3 and possibly ICP4 on capsids released by the nucleus.
Thirdly, to obtain information regarding another process of egress of HSV 1 from a membranous cellular organelle, the egress of HSV 1 from the TGN was also studied. The study revealed the implication of the cellular protein kinase D (PKD) in HSV 1 post-TGN transport. The involvement of this kinase, known to regulate the transport of small cargos, highlights the post TGN trafficking of both small and large entities (such as HSV 1) by a common machinery, in sharp contrast to earlier steps of transport. This indicates that the TGN is not only a sorting station but also a meeting point where different intracellular routes can meet.
All these outcomes contribute to a better understanding of the complex maturation process of HSV 1 that could lead to the development of better tools to fight the virus. Results acquired concerning HSV 1 could also be applied to other viruses. Besides their relevance in the virology field, findings provided by this project also supply new details about cellular biology concerning intracellular transport.
|
27 |
Influenza virus assemblyHöfer, Chris Tina 02 July 2015 (has links)
Influenza A Viren besitzen ein segmentiertes, einzelsträngiges RNA-Genom, welches in Form viraler Ribonukleoprotein (vRNP)-Komplexe verpackt ist. Während das virale Genom im Zellkern repliziert wird, finden Assemblierung und Knospung reifer Viruspartikel an der apikalen Plasmamembran statt. Für die Virusbildung müssen die einzelnen viralen Komponenten hierher gebracht werden. Während intrinsische apikale Signale der viralen Transmembranproteine bekannt sind, sind der zielgerichtete Transport und der Einbau des viralen Genoms in neuentstehende Virionen noch wenig verstanden. In dieser Arbeit wurden potentielle Mechanismen des vRNP-Transportes untersucht, wie die Fähigkeit der vRNPs mit Lipidmembranen zu assoziieren und die intrinsische subzellulären Lokalisation des viralen Nukleoproteins (NP), eines Hauptbestandteils der vRNPs. Es konnte gezeigt werden, dass vRNPs nicht mit Lipidmembranen assoziieren, was mittels Flotation aufgereinigter vRNPs mit Liposomen unterschiedlicher Zusammensetzung untersucht wurde. Die Ergebnisse deuten jedoch darauf hin, dass das virale M1 in der Lage ist, Bindung von vRNPs an negativ-geladene Lipidmembranen zu vermitteln. Subzelluläre Lokalisation von NP wurde des Weiteren durch Expression fluoreszierender NP-Fusionsproteine und Fluoreszenzphotoaktivierung untersucht. Es konnte gezeigt werden, dass NP allein nicht mit zytoplasmatischen Strukturen assoziiert, stattdessen aber umfangreiche Interaktionen im Zellkern eingeht und mit hoher Affinität mit bestimmten Kerndomänen assoziiert, und zwar den Nukleoli sowie kleinen Kerndomänen, welche häufig in der Nähe von Cajal-Körperchen und PML-Körperchen zu finden waren. Schließlich wurde ein experimenteller Ansatz etabliert, welcher erlaubt, den Transport vRNP-ähnlicher Komplexe mittels Fluoreszenzdetektion aufzuzeichnen und Einzelpartikelverfolgungsanalysen durchzuführen. Unterschiedliche Phasen des vRNP-Transportes konnten beobachtet werden und ein 3-Phasen-Transportmodell wird skizziert. / Influenza A viruses have a segmented single-stranded RNA genome, which is packed in form of viral ribonucleoprotein (vRNP) complexes. While the viral genome is replicated and transcribed in the host cell nucleus, assembly and budding of mature virus particles take place at the apical plasma membrane. Efficient virus formation requires delivery of all viral components to this site. While intrinsic apical targeting signals of the viral transmembrane proteins have been identified, it still remains poorly understood how the viral genome is transported and targeted into progeny virus particles. In this study, potential targeting mechanisms were investigated like the ability of vRNPs to associate with lipid membranes and the intrinsic ability of the viral nucleoprotein (NP) – which is the major protein component of vRNPs – for subcellular targeting. It could be shown that vRNPs are not able to associate with model membranes in vitro, which was demonstrated by flotation of purified vRNPs with liposomes of different lipid compositions. Results indicated, however, that the matrix protein M1 can mediate binding of vRNPs to negatively charged lipid bilayers. Intrinsic subcellular targeting of NP was further investigated by expression of fluorescent NP fusion protein and fluorescence photoactivation, revealing that NP by itself does not target cytoplasmic structures. It was found to interact extensively with the nuclear compartment instead and to target specific nuclear domains with high affinity, in particular nucleoli and small interchromatin domains that frequently localized in close proximity to Cajal bodies and PML bodies. An experimental approach was finally established that allowed monitoring the transport of vRNP-like complexes in living infected cells by fluorescence detection. It was possible to perform single particle tracking and to describe different stages of vRNP transport between the nucleus and the plasma membrane. A model of three-stage transport is suggested.
|
28 |
Statistical thermodynamics of virus assemblyLee, Se Il 06 April 2010 (has links)
Experiments show that MgSO4 salt has a non-monotonic effect as a function of MgSO4 concentration
on the ejection of DNA from bacteriophage lambda.
There is a concentration, N0, at which the minimum amount of DNA is ejected.
At lower or higher concentrations, more DNA is ejected. We propose that this non-monotonic behavior
is due to the overcharging of DNA at high concentration of Mg⁺² counterions.
As the Mg⁺² concentration increases from zero, the net charge of ejected DNA changes its sign from negative to positive.
N0 corresponds to the concentration at which DNA is neutral.
Our theory fits experimental data well.
The DNA-DNA electrostatic attraction is found to be -0.004 kBT/nucleotide.
Simulations of DNA-DNA interaction of a hexagonal DNA bundle support our theory.
They also show the non-monotonic DNA-DNA interaction and reentrant behavior of DNA condensation by divalent counterions.
Three problems in understanding the capsid assembly for a retrovirus are studied:
First, the way in which the viral membrane affects the structure of in vivo assembled HIV-1 capsid is studied.
We show that conical and cylindrical capsids have similar energy at high surface tension of the viral membrane,
which leads to the various shapes of HIV-1 capsids. Secondly, the problem of RNA genome packaging inside spherical viruses
is studied using RNA condensation theory. For weak adsorption strength of capsid protein, most RNA genomes are located at the center
of the capsid. For strong adsorption strength, RNA genomes peak near the capsid surface and the amount of RNA packaged is proportional to the capsid area instead its volume. Theory fits experimental data reasonably well.
Thirdly, the condensation of RNA molecules by nucleocapsid (NC) protein is studied.
The interaction between RNA molecules and NC proteins is important for the reverse transcription of viral RNA which relates to the viral infectivity.
For strong adsorption strength of the NC protein, there is a screening effect by RNA molecules around a single NC protein.
|
29 |
Étude de la sortie du virus herpès simplex de type 1 (HSV 1) hors du noyauRémillard-Labrosse, Gaudeline 09 1900 (has links)
Le virus herpès simplex de type 1 (HSV 1) affecte la majorité de la population mondiale. HSV 1 cause de multiples symptômes délétères dont les plus communs sont les lésions orofaciales usuellement appelées feux sauvages. Le virus peut aussi causer des effets plus sérieux comme la cécité ou des troubles neurologiques. Le virus réside de façon permanente dans le corps de son hôte. Malgré l’existence de nombreux traitements pour atténuer les symptômes causés par HSV 1, aucun médicament ne peut éliminer le virus. Dans le but d’améliorer les connaissances concernant le cycle viral de HSV 1, ce projet cible l’étude du transport du virus dans la cellule hôte. Ce projet aura permis la collecte d’informations concernant le modus operandi de HSV 1 pour sortir des compartiments cellulaires où il séjourne. Les différentes expérimentations ont permis de publier 3 articles dont un article qui a été choisi parmi les meilleurs papiers par les éditeurs de « Journal of Virology » ainsi qu’un 4e article qui a été soumis.
Premièrement, un essai in vitro reproduisant la sortie de HSV 1 du noyau a été mis sur pied, via l’isolation de noyaux issus de cellules infectées. Nous avons démontré que tout comme dans les cellules entières, les capsides s’évadent des noyaux isolés dans l’essai in vitro en bourgeonnant avec la membrane nucléaire interne, puis en s’accumulant sous forme de capsides enveloppées entre les deux membranes nucléaires pour finalement être relâchées dans le cytoplasme exclusivement sous une forme non enveloppée. Ces observations appuient le modèle de transport de dé-enveloppement/ré-enveloppement.
Deuxièmement, dans le but d’identifier des joueurs clefs viraux impliqués dans la sortie nucléaire du virus, les protéines virales associées aux capsides relâchées par le noyau ont été examinées. La morphologie multicouche du virus HSV 1 comprend un génome d’ADN, une capside, le tégument et une enveloppe. Le tégument est un ensemble de protéines virales qui sont ajoutées séquentiellement sur la particule virale. La séquence d’ajout des téguments de même que les sites intracellulaires où a lieu la tégumentation sont l’objet d’intenses recherches. L’essai in vitro a été utilisé pour étudier cette tégumentation. Les données recueillies suggèrent un processus séquentiel qui implique l’acquisition des protéines UL36, UL37, ICP0, ICP8, UL41, UL42, US3 et possiblement ICP4 sur les capsides relâchées par le noyau.
Troisièmement, pour obtenir davantage d’informations concernant la sortie de HSV 1 des compartiments membranaires de la cellule hôte, la sortie de HSV 1 du réseau trans golgien (TGN) a aussi été étudiée. L’étude a révélé l’implication de la protéine kinase D cellulaire (PKD) dans le transport post-TGN de HSV 1. PKD est connue pour réguler le transport de petits cargos et son implication dans le transport de HSV 1 met en lumière l’utilisation d’une machinerie commune pour le transport des petits et gros cargos en aval du TGN. Le TGN n’est donc pas seulement une station de triage, mais est aussi un point de rencontre pour différentes voies de transport intracellulaire.
Tous ces résultats contribuent à une meilleure compréhension du processus complexe de maturation du virus HSV 1, ce qui pourrait mener au développement de meilleurs traitements pour combattre le virus. Les données amassées concernant le virus HSV 1 pourraient aussi être appliquées à d’autres virus. En plus de leur pertinence dans le domaine de la virologie, les découvertes issues de ce projet apportent également de nouveaux détails au niveau du transport intracellulaire. / Herpes simplex virus type 1 (HSV 1) affects the majority of the world population. HSV 1 causes various deleterious symptoms with the most common being facial mucosal lesions usually named cold sores. The virus can also contribute to more serious effects such as corneal blindness and neurological problems. The virus is permanently residing in the host body. Despite the existence of several treatments against HSV 1 symptoms, no drug is able to eliminate the virus. In order to improve knowledge of the viral cycle of HSV 1, this project focuses on the transport of the virus in the host cell. During this project we collect data to detail the modus operandi used by HSV 1 to leave cellular compartments such as the nucleus and the TGN. The different experimentations achieved during this PhD allowed the publication of three articles, including one selected as worthy of note by the editors of “Journal of virology” and a fourth article that has been submitted.
Firstly, an in vitro assay that reproduces the exit of HSV 1 virus from nuclei was established via the isolation of nuclei from infected cells. We found that, as in intact cells, capsids escaped the isolated nuclei in the in vitro assay by budding through the inner nuclear membrane, accumulated as enveloped capsids between the two nuclear membranes, and were released in cytoplasm exclusively as unenveloped capsids. These observations support the de-envelopment / re-envelopment model of transport.
Secondly, to identify viral players implicated in the nuclear egress of HSV 1, viral proteins associated with nuclear released capsids were investigated. HSV 1 has a multilayered morphology that includes a DNA genome, a capsid, a tegument and an envelope. The tegument represents viral proteins added sequentially on the viral particle. The sequential order and intracellular compartments where the tegument is added are the subject of intense research. The in vitro assay was used to investigate this tegumentation process. The acquired data suggest a sequential process that involved the acquisition of viral proteins UL36, UL37, ICP0, ICP8, UL41, UL42, US3 and possibly ICP4 on capsids released by the nucleus.
Thirdly, to obtain information regarding another process of egress of HSV 1 from a membranous cellular organelle, the egress of HSV 1 from the TGN was also studied. The study revealed the implication of the cellular protein kinase D (PKD) in HSV 1 post-TGN transport. The involvement of this kinase, known to regulate the transport of small cargos, highlights the post TGN trafficking of both small and large entities (such as HSV 1) by a common machinery, in sharp contrast to earlier steps of transport. This indicates that the TGN is not only a sorting station but also a meeting point where different intracellular routes can meet.
All these outcomes contribute to a better understanding of the complex maturation process of HSV 1 that could lead to the development of better tools to fight the virus. Results acquired concerning HSV 1 could also be applied to other viruses. Besides their relevance in the virology field, findings provided by this project also supply new details about cellular biology concerning intracellular transport.
|
Page generated in 0.0594 seconds