• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Équation de Hamilton-Jacobi et jeux à champ moyen sur les réseaux / Hamilton-Jacobi equations and Mean field games on networks

Dao, Manh-Khang 17 October 2018 (has links)
Cette thèse porte sur l'étude d'équation de Hamilton-Jacobi-Bellman associées à des problèmes de contrôle optimal et de jeux à champ moyen avec la particularité qu'on se place sur un réseau (c'est-à-dire, des ensembles constitués d'arêtes connectées par des jonctions) dans les deux problèmes, pour lesquels on autorise différentes dynamiques et différents coûts dans chaque bord d'un réseau. Dans la première partie de cette thèse, on considère un problème de contrôle optimal sur les réseaux dans l'esprit des travaux d'Achdou, Camilli, Cutrì & Tchou (2013) et Imbert, Moneau & Zidani (2013). La principale nouveauté est qu'on rajoute des coûts d'entrée (ou de sortie) aux sommets du réseau conduisant à une éventuelle discontinuité de la fonction valeur. Celle-ci est caractérisée comme l'unique solution de viscosité d'une équation Hamilton-Jacobi pour laquelle une condition de jonction adéquate est établie. L'unicité est une conséquence d'un principe de comparaison pour lequel nous donnons deux preuves différentes, l'une avec des arguments tirés de la théorie du contrôle optimal, inspirée par Achdou, Oudet & Tchou (2015) et l'autre basée sur les équations aux dérivées partielles, d'après Lions & Souganidis (2017). La deuxième partie concerne les jeux à champ moyen stochastiques sur les réseaux. Dans le cas ergodique, ils sont décrits par un système couplant une équation de Hamilton-Jacobi-Bellman et une équation de Fokker- Planck, dont les inconnues sont la densité m de la mesure invariante qui représente la distribution des joueurs, la fonction valeur v qui provient d'un problème de contrôle optimal "moyen" et la constante ergodique ρ. La fonction valeur v est continue et satisfait dans notre problème des conditions de Kirchhoff aux sommets très générales. La fonction m satisfait deux conditions de transmission aux sommets. En particulier, due à la généralité des conditions de Kirchhoff, m est en général discontinue aux sommets. L'existence et l'unicité d'une solution faible sont prouvées pour des Hamiltoniens sous-quadratiques et des hypothèses très générales sur le couplage. Enfin, dans la dernière partie, nous étudions les jeux à champ moyen stochastiques non stationnaires sur les réseaux. Les conditions de transition pour la fonction de valeur v et la densité m sont similaires à celles données dans la deuxième partie. Là aussi, nous prouvons l'existence et l'unicité d'une solution faible pour des Hamiltoniens sous-linéaires et des couplages et dans le cas d'un couplage non-local régularisant et borné inférieurement. La principale difficulté supplémentaire par rapport au cas stationnaire, qui nous impose des hypothèses plus restrictives, est d'établir la régularité des solutions du système posé sur un réseau. Notre approche consiste à étudier la solution de l'équation de Hamilton-Jacobi dérivée pour gagner de la régularité sur la solution de l'équation initiale. / The dissertation focuses on the study of Hamilton-Jacobi-Bellman equations associated with optimal control problems and mean field games problems in the case when the state space is a network. Different dynamics and running costs are allowed in each edge of the network. In the first part of this thesis, we consider an optimal control on networks in the spirit of the works of Achdou, Camilli, Cutrì & Tchou (2013) and Imbert, Monneau & Zidani (2013). The main new feature is that there are entry (or exit) costs at the edges of the network leading to a possible discontinuous value function. The value function is characterized as the unique viscosity solution of a Hamilton-Jacobi equation for which an adequate junction condition is established. The uniqueness is a consequence of a comparison principle for which we give two different proofs. One uses some arguments from the theory of optimal control and is inspired by Achdou, Oudet & Tchou (2015). The other one is based on partial differential equations techniques and is inspired by a recent work of Lions & Souganidis (2017). The second part is about stochastic mean field games for which the state space is a network. In the ergodic case, they are described by a system coupling a Hamilton- Jacobi-Bellman equation and a Fokker-Planck equation, whose unknowns are the density m of the invariant measure which represents the distribution of the players, the value function v which comes from an "average" optimal control problem and the ergodic constant ρ. The function v is continuous and satisfies general Kirchhoff conditions at the vertices. The density m satisfies dual transmission conditions. In particular, due to the generality of Kirchhoff’s conditions, m is in general discontinuous at the vertices. Existence and uniqueness are proven for subquadratic Hamiltonian and very general assumptions about the coupling term. Finally, in the last part, we study non-stationary stochastic mean field games on networks. The transition conditions for value function v and the density m are similar to the ones given in second part. Here again, we prove the existence and uniqueness of a weak solution for sublinear Hamiltonian and bounded non-local regularizing coupling term. The main additional difficulty compared to the stationary case, which imposes us more restrictive hypotheses, is to establish the regularity of the solutions of the system placed on a network. Our approach is to study the solution of the derived Hamilton-Jacobi equation to gain regularity over the initial equation.
12

Équations de Hamilton-Jacobi sur des réseaux ou des structures hétérogènes / Hamilton-Jacobi equations on networks or heterogeneous structures

Oudet, Salomé 03 November 2015 (has links)
Cette thèse porte sur l'étude de problèmes de contrôle optimal sur des réseaux (c'est-à-dire des ensembles constitués de sous-régions reliées entre elles par des jonctions), pour lesquels on autorise différentes dynamiques et différents coûts instantanés dans chaque sous-région du réseau. Comme dans les cas plus classiques, on aimerait pouvoir caractériser la fonction valeur d'un tel problème de contrôle par le biais d'une équation de Hamilton-Jacobi-Bellman. Cependant, les singularités géométriques du domaine, ainsi que les discontinuités des données ne nous permettent pas d'appliquer la théorie classique des solutions de viscosité. Dans la première partie de cette thèse nous prouvons que les fonctions valeurs de problèmes de contrôle optimal définis sur des réseaux 1-dimensionnel sont caractérisées par de telles équations. Dans la seconde partie les résultats précédents sont étendus au cas de problèmes de contrôle définis sur une jonction 2-dimensionnelle. Enfin, dans une dernière partie, nous utilisons les résultats obtenus précédemment pour traiter un problème de perturbation singulière impliquant des problèmes de contrôle optimal dans le plan pour lesquels les dynamiques et les coûts instantanés peuvent être discontinus à travers une frontière oscillante. / This thesis focuses on the study of optimal control problems defined on networks (i.e. sets consisting of sub-regions connected together through junctions), where different dynamics and different running costs are allowed in each sub-region of the network. As in classical cases, we would like to characterize the value function of such an optimal control problem through an Hamilton-Jacobi-Bellman equation. However, the geometrical singularities of the domain and the data discontinuities do not allow us to apply the classical theory of viscosity solutions. In the first part of this thesis, we prove this kind of characterization for the value functions of optimal control problems defined on 1-dimensional networks. In the second part, the previous results are extended to the case of control problems defined on a 2-dimensional junction. Finally, in the last part, we use the results obtained previously to treat a singular perturbation problem involving optimal control problems in the plane for which the dynamics and running costs can be discontinuous through an oscillating border.
13

Numerical Methods for Continuous Time Mean Variance Type Asset Allocation

Wang, Jian January 2010 (has links)
Many optimal stochastic control problems in finance can be formulated in the form of Hamilton-Jacobi-Bellman (HJB) partial differential equations (PDEs). In this thesis, a general framework for solutions of HJB PDEs in finance is developed, with application to asset allocation. The numerical scheme has the following properties: it is unconditionally stable; convergence to the viscosity solution is guaranteed; there are no restrictions on the underlying stochastic process; it can be easily extended to include features as needed such as uncertain volatility and transaction costs; and central differencing is used as much as possible so that use of a locally second order method is maximized. In this thesis, continuous time mean variance type strategies for dynamic asset allocation problems are studied. Three mean variance type strategies: pre-commitment mean variance, time-consistent mean variance, and mean quadratic variation, are investigated. The numerical method can handle various constraints on the control policy. The following cases are studied: allowing bankruptcy (unconstrained case), no bankruptcy, and bounded control. In some special cases where analytic solutions are available, the numerical results agree with the analytic solutions. These three mean variance type strategies are compared. For the allowing bankruptcy case, analytic solutions exist for all strategies. However, when additional constraints are applied to the control policy, analytic solutions do not exist for all strategies. After realistic constraints are applied, the efficient frontiers for all three strategies are very similar. However, the investment policies are quite different. These results show that, in deciding which objective function is appropriate for a given economic problem, it is not sufficient to simply examine the efficient frontiers. Instead, the actual investment policies need to be studied in order to determine if a particular strategy is applicable to specific investment problem.
14

Numerical Methods for Continuous Time Mean Variance Type Asset Allocation

Wang, Jian January 2010 (has links)
Many optimal stochastic control problems in finance can be formulated in the form of Hamilton-Jacobi-Bellman (HJB) partial differential equations (PDEs). In this thesis, a general framework for solutions of HJB PDEs in finance is developed, with application to asset allocation. The numerical scheme has the following properties: it is unconditionally stable; convergence to the viscosity solution is guaranteed; there are no restrictions on the underlying stochastic process; it can be easily extended to include features as needed such as uncertain volatility and transaction costs; and central differencing is used as much as possible so that use of a locally second order method is maximized. In this thesis, continuous time mean variance type strategies for dynamic asset allocation problems are studied. Three mean variance type strategies: pre-commitment mean variance, time-consistent mean variance, and mean quadratic variation, are investigated. The numerical method can handle various constraints on the control policy. The following cases are studied: allowing bankruptcy (unconstrained case), no bankruptcy, and bounded control. In some special cases where analytic solutions are available, the numerical results agree with the analytic solutions. These three mean variance type strategies are compared. For the allowing bankruptcy case, analytic solutions exist for all strategies. However, when additional constraints are applied to the control policy, analytic solutions do not exist for all strategies. After realistic constraints are applied, the efficient frontiers for all three strategies are very similar. However, the investment policies are quite different. These results show that, in deciding which objective function is appropriate for a given economic problem, it is not sufficient to simply examine the efficient frontiers. Instead, the actual investment policies need to be studied in order to determine if a particular strategy is applicable to specific investment problem.
15

[en] ALEKSANDROV-BAKELMAN-PUCCI ESTIMATES / [pt] ESTIMATIVAS ALEKSANDROV-BAKELMAN-PUCCI

ORTENILTON DOS SANTOS FILHO 13 September 2023 (has links)
[pt] Esta dissertação versa sobre a teoria das soluções de viscosidadepara equações diferenciais parciais elípticas completamente não-lineares com ingredientes mensuráveis. Nosso principal objetivo é demonstrar o Princípio do Máximo de Aleksandrov-Bakelman-Pucci neste contexto. / [en] This dissertation deals with the theory of viscosity solutions for fully nonlinear elliptic partial differential equations with measurable ingredients. Our main objective is to demonstrate the Aleksandrov-Bakelman-Pucci Maximum Principle in this context.
16

Les processus additifs markoviens et leurs applications en finance mathématique

Momeya Ouabo, Romuald Hervé 05 1900 (has links)
Cette thèse porte sur les questions d'évaluation et de couverture des options dans un modèle exponentiel-Lévy avec changements de régime. Un tel modèle est construit sur un processus additif markovien un peu comme le modèle de Black- Scholes est basé sur un mouvement Brownien. Du fait de l'existence de plusieurs sources d'aléa, nous sommes en présence d'un marché incomplet et ce fait rend inopérant les développements théoriques initiés par Black et Scholes et Merton dans le cadre d'un marché complet. Nous montrons dans cette thèse que l'utilisation de certains résultats de la théorie des processus additifs markoviens permet d'apporter des solutions aux problèmes d'évaluation et de couverture des options. Notamment, nous arrivons à caracté- riser la mesure martingale qui minimise l'entropie relative à la mesure de probabilit é historique ; aussi nous dérivons explicitement sous certaines conditions, le portefeuille optimal qui permet à un agent de minimiser localement le risque quadratique associé. Par ailleurs, dans une perspective plus pratique nous caract érisons le prix d'une option Européenne comme l'unique solution de viscosité d'un système d'équations intégro-di érentielles non-linéaires. Il s'agit là d'un premier pas pour la construction des schémas numériques pour approcher ledit prix. / This thesis focuses on the pricing and hedging problems of financial derivatives in a Markov-modulated exponential-Lévy model. Such model is built on a Markov additive process as much as the Black-Scholes model is based on Brownian motion. Since there exist many sources of randomness, we are dealing with an incomplete market and this makes inoperative techniques initiated by Black, Scholes and Merton in the context of a complete market. We show that, by using some results of the theory of Markov additive processes it is possible to provide solutions to the previous problems. In particular, we characterize the martingale measure which minimizes the relative entropy with respect to the physical probability measure. Also under some conditions, we derive explicitly the optimal portfolio which allows an agent to minimize the local quadratic risk associated. Furthermore, in a more practical perspective we characterize the price of a European type option as the unique viscosity solution of a system of nonlinear integro-di erential equations. This is a rst step towards the construction of e ective numerical schemes to approximate options price.
17

Numerical Methods for Optimal Stochastic Control in Finance

Chen, Zhuliang January 2008 (has links)
In this thesis, we develop partial differential equation (PDE) based numerical methods to solve certain optimal stochastic control problems in finance. The value of a stochastic control problem is normally identical to the viscosity solution of a Hamilton-Jacobi-Bellman (HJB) equation or an HJB variational inequality. The HJB equation corresponds to the case when the controls are bounded while the HJB variational inequality corresponds to the unbounded control case. As a result, the solution to the stochastic control problem can be computed by solving the corresponding HJB equation/variational inequality as long as the convergence to the viscosity solution is guaranteed. We develop a unified numerical scheme based on a semi-Lagrangian timestepping for solving both the bounded and unbounded stochastic control problems as well as the discrete cases where the controls are allowed only at discrete times. Our scheme has the following useful properties: it is unconditionally stable; it can be shown rigorously to converge to the viscosity solution; it can easily handle various stochastic models such as jump diffusion and regime-switching models; it avoids Policy type iterations at each mesh node at each timestep which is required by the standard implicit finite difference methods. In this thesis, we demonstrate the properties of our scheme by valuing natural gas storage facilities---a bounded stochastic control problem, and pricing variable annuities with guaranteed minimum withdrawal benefits (GMWBs)---an unbounded stochastic control problem. In particular, we use an impulse control formulation for the unbounded stochastic control problem and show that the impulse control formulation is more general than the singular control formulation previously used to price GMWB contracts.
18

Numerical Methods for Optimal Stochastic Control in Finance

Chen, Zhuliang January 2008 (has links)
In this thesis, we develop partial differential equation (PDE) based numerical methods to solve certain optimal stochastic control problems in finance. The value of a stochastic control problem is normally identical to the viscosity solution of a Hamilton-Jacobi-Bellman (HJB) equation or an HJB variational inequality. The HJB equation corresponds to the case when the controls are bounded while the HJB variational inequality corresponds to the unbounded control case. As a result, the solution to the stochastic control problem can be computed by solving the corresponding HJB equation/variational inequality as long as the convergence to the viscosity solution is guaranteed. We develop a unified numerical scheme based on a semi-Lagrangian timestepping for solving both the bounded and unbounded stochastic control problems as well as the discrete cases where the controls are allowed only at discrete times. Our scheme has the following useful properties: it is unconditionally stable; it can be shown rigorously to converge to the viscosity solution; it can easily handle various stochastic models such as jump diffusion and regime-switching models; it avoids Policy type iterations at each mesh node at each timestep which is required by the standard implicit finite difference methods. In this thesis, we demonstrate the properties of our scheme by valuing natural gas storage facilities---a bounded stochastic control problem, and pricing variable annuities with guaranteed minimum withdrawal benefits (GMWBs)---an unbounded stochastic control problem. In particular, we use an impulse control formulation for the unbounded stochastic control problem and show that the impulse control formulation is more general than the singular control formulation previously used to price GMWB contracts.
19

Les processus additifs markoviens et leurs applications en finance mathématique

Momeya Ouabo, Romuald Hervé 05 1900 (has links)
Cette thèse porte sur les questions d'évaluation et de couverture des options dans un modèle exponentiel-Lévy avec changements de régime. Un tel modèle est construit sur un processus additif markovien un peu comme le modèle de Black- Scholes est basé sur un mouvement Brownien. Du fait de l'existence de plusieurs sources d'aléa, nous sommes en présence d'un marché incomplet et ce fait rend inopérant les développements théoriques initiés par Black et Scholes et Merton dans le cadre d'un marché complet. Nous montrons dans cette thèse que l'utilisation de certains résultats de la théorie des processus additifs markoviens permet d'apporter des solutions aux problèmes d'évaluation et de couverture des options. Notamment, nous arrivons à caracté- riser la mesure martingale qui minimise l'entropie relative à la mesure de probabilit é historique ; aussi nous dérivons explicitement sous certaines conditions, le portefeuille optimal qui permet à un agent de minimiser localement le risque quadratique associé. Par ailleurs, dans une perspective plus pratique nous caract érisons le prix d'une option Européenne comme l'unique solution de viscosité d'un système d'équations intégro-di érentielles non-linéaires. Il s'agit là d'un premier pas pour la construction des schémas numériques pour approcher ledit prix. / This thesis focuses on the pricing and hedging problems of financial derivatives in a Markov-modulated exponential-Lévy model. Such model is built on a Markov additive process as much as the Black-Scholes model is based on Brownian motion. Since there exist many sources of randomness, we are dealing with an incomplete market and this makes inoperative techniques initiated by Black, Scholes and Merton in the context of a complete market. We show that, by using some results of the theory of Markov additive processes it is possible to provide solutions to the previous problems. In particular, we characterize the martingale measure which minimizes the relative entropy with respect to the physical probability measure. Also under some conditions, we derive explicitly the optimal portfolio which allows an agent to minimize the local quadratic risk associated. Furthermore, in a more practical perspective we characterize the price of a European type option as the unique viscosity solution of a system of nonlinear integro-di erential equations. This is a rst step towards the construction of e ective numerical schemes to approximate options price.
20

Construction de solutions particulières de types ondes progressives pour le modèle de Frenkel-Kontorova et pour l’équation des ondes régularisée / Construction of particular solution of travelling wave types for the Frenkel-Kontorova model and the regularized wave equation

Walha, Sonda 03 December 2018 (has links)
Cette thèse porte sur la construction de solutions particulières de type ondes progressives ou ondes planes pour différentes équations aux dérivées partielles (EDP) et en particulier le modèle de Frenkel-Kontorova et une équation des ondes régularisée. Ce mémoire s’articule comme suit. Le chapitre 1 est destiné à une introduction générale dans laquelle je présente une motivation physique et un résumé de mon travail. Le chapitre 2 est destiné à l’étude d’existence et d’unicité des ondes progressives avec le terme d’accélération. Ce modèle consiste d’un système d’ODE qui décrit le mouvement de particules en interaction. Les applications les plus importantes que nous avons à l’esprit est le mouvement des défauts cristallins appelés dislocations. Pour ce modèle, nous montrons l’existence des ondes progressives sous des hypothèses très faibles. L’unicité de la vitesse a été étudiée ainsi que l’unicité du profil en utilisant les différents types du principe de maximum fort. Comme ce que nous savons, c’est le premier résultat concernant les ondes progressives pour un système accéléré, spatialement discret. Ce chapitre est un article publié à la revue Journal of Dynamic and Differential Equation : Existence and uniqueness of traveling wave for accelerated Frenkel-Kontorova model, Journal of Dynamic and Differential Equation : Volume 26, Issue 24 (2014), page 1133-1169. Le chapitre 3 est réservé à l’homogénéisation numérique du modèle Frenkel-Kontrova dans le cas amortie. Je présente deux méthodes pour calculer l’hamiltonien effectif: la méthode grand temps et la méthode de Newton. Quelques simulations de l’hamiltonien effectif sont fournies. Le chapitre 4 est destiné à l’étude d’équation d’onde dans un domaine périodique. Selon certaines hypothèses, je construis une solution d’onde plane pour le problème approché et je montre que cette solution satisfait certaines propriétés. Je définis un opérateur non local et un terme correcteur afin de contrôler les oscillations de la solution dans l’espace et dans le temps. Je prouve la construction d’une solution d’onde plane pour un problème approché en utilisant la notion de solution de viscosité. / This thesis deals with the construction of particular solutions of traveling wave or plane wave for different equations partial derivative (EDP) and in particular the Frenkel-Kontorova model and a regularized wave equation. This memory is structured as follows. The chapter 1 is preserved for a general introduction in which i present a physical motivation and a abstract of my work. In chapter 2, I interested to the study the existence and uniqueness of traveling wave solution for the accelerated Frenkel-Kontorova model. This model consist in a system of ODE that describe the motion particles in interaction. The most important applications ihave inmind in the motion of cristal defects called dislocations. For this model, i prove the exxistence of traveling wave solutions under very weak assumptions. The uniqueness of the velocity is also studied as well the uniqueness of the profile which used ddifferent types of strpng maximum principle. As far as we know, this is the first result concerning traveling waves for accelerated, spatially discrete system. This chapter is an article published in the Journal Dynamic and Differential Equation:Existence and uniqueness of traveling wave for accelerated Frenkel-Kontorova model, Journal of dynamic and Differential Equation : Volume 26, Issue 24 (2014), page 1133-1169. In chapter 3, i interested in the numerical homogenization of fully overdomped frenkel-Kontorova model. I present two methods for computing the effective hamiltonian : large time method and Newton-like method. Some simulations of the effective hamiltonian are provided. Le chapter 4 is preserved to the study a wave equation in a periodic medium. Under certain assumption, i construct a plane wave like solution, and show that this solution satisfy some properties. I define a non- local operator and a term corrector in order to control the oscillations of the solution in space and in time. We prove the construction of a plane wave like solution for the approched problem using the notion of viscosity solution.

Page generated in 0.0892 seconds