• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 517
  • 182
  • 85
  • 74
  • 61
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 7
  • 5
  • 5
  • Tagged with
  • 1155
  • 175
  • 143
  • 109
  • 102
  • 98
  • 78
  • 67
  • 59
  • 56
  • 55
  • 55
  • 54
  • 54
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Compaction and Cure of Resin Film Infusion Prepregs

Thompson, Joseph E. 07 January 2005 (has links)
Gutowski et al.'s model has been employed to describe the cure and consolidation of prepregs used for resin film infusion. Resin kinetics, rheology, flow and fiber deformation are considered. Resin kinetics are simulated with an isothermal autocatalytic-1 type relation. The non-Newtonian viscosity of the Cytec™ 754 resin is represented with a gel type expression. The one dimensional flow of resin through a deformable, partially saturated porous medium is studied. A nonlinear partial differential equation describing the spatial and temporal variation of the fiber volume fraction combining the continuity equation, Darcy's Law, and mat compressibility has been derived and solved numerically. Resin is assumed to be incompressible and inertial effects are neglected. Based on the resin content of regions where resin and fiber coexist, expressions for tracking resin flow through fully and partially saturated regions of fiber are given. Values of material parameters for the E-QX 3600-5 glass fabric are estimated from literature data involving compression of similar dry fabrics and through comparison of computed results with the experimental data. Results for the final thickness of the consolidated part agree with the experimental values, but those for the mass loss do not. / Master of Science
382

High-pressure viscosity and density of polymer solutions at the critical polymer concentration in near-critical and supercritical fluids

Dindar, Cigdem 22 April 2002 (has links)
The motivation for the determination of the viscosity of polymer solutions in dense fluids at the critical polymer concentration stems from the need to understand the factors that influence the time scale of phase separation in systems that undergo spinodal decomposition upon a pressure quench. In a recent investigation of PDMS + CO₂ and PE + n-pentane where molecular weights of the polymers and the critical polymer concentrations were comparable, significant differences were observed in the time evolution of new phase growth. Among the reasons that contribute to the difference in phase separation kinetics is the viscosity of the solutions. This thesis has been carried out to experimentally demonstrate the differences in viscosities of solutions at their critical polymer concentration. Specifically, the thesis focused on the high-pressure density and viscosity of solutions of poly(dimethylsiloxane) (Mw = 93,700, Mw/Mn = 2.99) in supercritical carbon dioxide and of polyethylene (Mw = 121,000, Mw/Mn = 4.3) in near-critical n-pentane. The measurements have been carried out at the critical polymer concentrations, which is 5.5 wt % for solution of PDMS in CO2 and 5.75 wt % for solution of PE in n-pentane. For PDMS + CO₂ system, the measurements were conducted at 55, 70, 85 and 100 oC and pressures up to 50 MPa. For PE + n-pentane system, the measurements were conducted at 140 and 150 °C and again up to 50 MPa. All measurements were conducted in the one-phase homogenous regions. At these temperatures and pressures, the viscosities were observed to be in the range from 0.14 mPa.s to 0.22 mPa.s for PDMS + CO₂, and from 2.3 mPa.s to 4.6 mPa.s for PE + n-pentane systems. In both systems the viscosities increase with pressure and decrease with temperature. The temperature and pressure dependence could be described by Arrhenius type relationships in terms of flow activation energy (E#) and flow activation volume (V#) parameters. The flow activation energies in PDMS + CO₂ system were about 7 kJ/mol compared to about 18 kJ/mol for the PE + n-pentane system. The activation volumes were in the range 40-64 cm3/mol for PDMS + CO₂ system and 65-75 cm3/mol for the PE + n-pentane solution. The higher values of E# and V# represent the higher sensitivity of viscosity to temperature and pressure changes in the PE + n-pentane system. The viscosity data could also be correlated in terms of density using free-volume based Doolittle type equations. Density is shown to be an effective scaling parameter to describe T/P dependency of viscosity. The closed packed volumes suggested from density correlations were found to be around 0.33 cm³/g for the PDMS and 0.48 cm3/g for the PE systems. Comparison of the viscosity data in these systems with the data on the kinetics of pressure-induced phase separation confirms that the slower kinetics in the PE + n-pentane stems from the higher viscosity in this solution compared to the PDMS + CO₂ system, despite the similarity in the molecular weight of the polymer and the critical polymer concentrations. These viscosity and density measurements were conducted in a special falling-body type viscometer. In the course of this thesis a more reliable procedure for determining the terminal velocity of the falling sinker was implemented. This is based on the precise and more complete description of the position of the sinker with time with the aid of a set of linear variable differential transformers (LVDTs). The design of the new arrangement and procedure for terminal velocity determination and calibration procedures for the viscometer are also presented. The densities and viscosities are determined with an accuracy of ± 1 % and ± 5 % or better, respectively. / Master of Science
383

Turbulence structure and momentum exchange in compound channel flows with shore ice covered on the floodplains

Wang, F., Huai, W., Guo, Yakun, Liu, M. 17 March 2021 (has links)
Yes / Ice cover formed on a river surface is a common natural phenomenon during winter season in cold high latitude northern regions. For the ice-covered river with compound cross-section, the interaction of the turbulence caused by the ice cover and the channel bed bottom affects the transverse mass and momentum exchange between the main channel and floodplains. In this study, laboratory experiments are performed to investigate the turbulent flow of a compound channel with shore ice covered on the floodplains. Results show that the shore ice resistance restricts the development of the water flow and creates a relatively strong shear layer near the edge of the ice-covered floodplain. The mean streamwise velocity in the main channel and on the ice-covered floodplains shows an opposite variation pattern along with the longitudinal distance and finally reaches the longitudinal uniformity. The mixing layer bounded by the velocity inflection point consists of two layers that evolve downstream to their respective fully developed states. The velocity inflection point and strong transverse shear near the interface in the fully developed profile generate the Kelvin-Helmholtz instability and horizontal coherent vortices. These coherent vortices induce quasi-periodic velocity oscillations, while the dominant frequency of the vortical energy is determined through the power spectral analysis. Subsequently, quadrant analysis is used in ascertaining the mechanism for the lateral momentum exchange, which exhibits the governing contributions of sweeps and ejections within the vortex center. Finally, an eddy viscosity model is presented to investigate the transverse momentum exchange. The presented model is well validated through comparison with measurements, whereas the constants α and β appeared in the model need to be further investigated. / National Natural Science Foundation of China (NSFC). Grant Numbers: 52020105006, 11872285: State Key Laboratory of Water Resources and Hydropower Engineering Science (WRHES), Wuhan University. Grant Number: 2018HLG01
384

Microcantilever Based Viscosity Measurement as it Applies to Oscillation Amplitude Response

Siegel, Sanford H. 08 1900 (has links)
The goal of this research is to measure viscosity via the analysis of amplitude response of a piezo driven vibrating cantilevers partially immersed in a viscous medium. As a driving frequency is applied to a piezoceramic material, the external forces acting on the system will affect its maximum amplitude. This thesis applies this principle through experimental and analytical analyses of the proportional relationship between viscosity and the amplitude response of the first natural frequency mode of the sinusoidal vibration. Currently, the few cantilever-based viscometer designs that exist employ resonant frequency response as the parameter by which the viscosity is correlated. The proposed piezoelectric viscometer employs amplitude response in lieu of resonant frequency response. The goal of this aspect of the research was to provide data confirming amplitude response as a viable method for determining viscosity. A miniature piezoelectric plate was mounted to a small stainless-steel cantilever beam. The tip of the cantilever was immersed within various fluid test samples. The cantilever was then swept through a range of frequencies in which the first frequency mode resided. The operating principle being as the viscosity of the fluid increases the amplitude response of cantilever vibration will decrease relatively. What was found was in fact an inversely exponential relationship between dynamic viscosity and the cantilever beam's vibrational amplitude response. The experiment was performed using three types of cantilevers as to experimentally test the sensitivity of each.
385

Investigations of thermophysical properties of slags with focus on slag-metal interface

Muhmood, Luckman January 2010 (has links)
The objective of this research work was to develop a methodology for experimentally estimating the interfacial properties at slag-metal interfaces. From previous experiments carried out in the division, it was decided to use surface active elements like sulfur or oxygen to trace any motion at the interface. For this purpose the following experimental investigations were carried out. Firstly the density of slag was estimated using the Archimedes Principle and the Sessile Drop technique. The density of the slag would give the molten slag height required for the surface active element to travel before reaching the slag-metal interface. Diffusivity measurements were uniquely designed in order to estimate the sulfur diffusion through slag media. It was for the first time that the chemical diffusivity was estimated from the concentration in the metal phase. Experiments carried out validated the models developed earlier. The density and diffusivity value of sulfur in the slag was used to accurately capture the time for sulfur to reach the slag-metal interface. The oscillations were identified by calculating the contact angle variations and the interfacial velocity was estimated from the change in the surface area of the liquid iron drop. The interfacial tension was estimated from the contact angles and the interfacial dilatational modulus was calculated. Based on cold model experiments using water as well as mercury, an equation of the dependence of the interfacial shear viscosity on the interfacial velocity and interfacial tension was established. This paved way for the estimation of the interfacial shear viscosity at the slag-metal interface. The present study is expected to have a strong impact on refining reactions in pyometallurgical industries where slag/metal interfaces play an important role. From a fundamental view point, this provides a deeper insight into interfacial phenomena and presents an experimental technique to quantify the same. / QC 20101130
386

Water holding capacity and viscosity of ingredients from oats : the effect of b-glucan and starch content, particle size, pH and temperature

Berggren, Sofia January 2018 (has links)
Oats is a crop that contains a high amount of fiber, protein and fat, but like all other crops it contains mostly starch. In this study the focus has been oat flours and brans with different b-glucan content. The health benefits of b-glucan, a soluble fiber are well documented and a correlation between intake of b-glucan with high molecular weight and a low glycemic response has been observed. Food with a low glycemic index can lower the risk for diseases like type 2 diabetes, cardiovascular diseases and obesity. Also a connection between intake of b-glucan with high molecular weight and a reduction of LDL-cholesterol has been observed. b-glucans from oat absorb water and build a viscous gel, which make them an interesting component when developing new products, as a fat replacer in for example meat products and pastries. To optimize the use of flours and brans with a modified b-glucan content in new applications, the water absorption was measured with a method called Solvent Retention Capacity and the viscosity with a Rapid Viscosity Analyzer (RVA). The results showed that a higher amount of b-glucan in the flour or bran, a higher water holding capacity (WHC) was observed. The WHC for oat flour with a b-glucan content at 2% was calculated to 73±7%, while the WHC for oat bran with a b-glucan content at 28%, was calculated to a WHC of 880±45%. A comparison of different flours and brans indicates that dietary fiber, where b-glucan have the greatest impact on the WHC. The result from the RVA indicates that a flour with a combination of a high b-glucan content (0.24g) and high starch content (3.72g) leads to a high viscosity 12700 cP, compared to other flours or brans with either a lower b-glucan content (0.12g) or lower starch content (0.12g) gives lower final viscosity, 5390 and 780 cP. The result also indicates that other factors such as a smaller particle size and a higher temperature during the heating step (95°C instead of 64°C) might give a higher viscosity.
387

Etude rhéologique de formulations thermodurcissables, pour la modélisation de procédés de type SMC / Rheological study of thermoset formulations, for the modellisation of moulding processes like Sheet Moulding Compound

Rothan, Alexandre 25 January 2016 (has links)
Les travaux présentés s’axent autour de 2 chapitres indépendants : - le 1er concerne l’étude rhéologique d’une formulation pour SMC sans fibres. Cette étude permet d’élaborer des lois de comportement rhéologique. Ces lois sont ensuite insérées dans un code de calcul de simulation numérique afin de prédire les efforts mis en jeu lors d’une compression. Ces données simulées sont comparées avec des données de compression obtenues expérimentalement. - le 2ème se penche sur l’étude d’un comportement rhéologique rare : la rhéopexie négative. La viscosité de l’échantillon dépend de l’histoire de cisaillement qui lui est appliquée. Ce comportement est très sensible à la composition du mélange, et fait intervenir 4 constituants. Dès lors que l’un d’eux est retiré, le phénomène disparaît. Le mélange étudié est constitué de produits classiquement utilisés pour la production de SMC. / The research presented is divided into 2 independents chapters: - the 1st one focuses on the rheological study of a fibreless formulation for SMC. This study allows us to write constitutive equations of the formulation. These equations are in turn implemented in a numerical simulation program, in order to predict the forces generated during a compression experiment. These simulated data are eventually compared with experimental data obtained during compression.- the 2nd chapter concerns the study of a rare rheological behaviour: the negative rheopexy. The viscosity of the sample depends on its shear history, in a very different way than a thixotropic sample’s viscosity would. This rheological behaviour is very component sensitive, and results from the interactions between 4 components. As soon as one of them is missing, the negative rheopexy disappears. The mixture studied is constituted of products traditionally used for the production of SMC.
388

The development and application of two-time-scale turbulence models for non-equilibrium flows

Klein, Tania S. January 2012 (has links)
The reliable prediction of turbulent non-equilibrium flows is of high academic and industrial interest in several engineering fields. Most turbulent flows are often predicted using single-time-scale Reynolds-Averaged-Navier-Stokes (RANS) turbulence models which assume the flows can be modelled through a single time or length scale which is an admittedly incorrect assumption. Therefore they are not expected to capture the lag in the response of the turbulence in non-equilibrium flows. In attempts to improve prediction of these flows, by taking into consideration some features of the turbulent kinetic energy spectrum, the multiple-time-scale models arose. A number of two-scale models have been proposed, but so far their use has been rather limited.This work thus focusses on the development of two-time-scale approaches. Two two-time-scale linear-eddy-viscosity models, referred to as NT1 and NT2 models, have been developed and the initial stages of the development of two-time-scale non-linear-eddy-viscosity models are also reported. The models' coefficients have been determined through asymptotic analysis of decaying grid turbulence, homogeneous shear flows and the flow in a boundary layer in local equilibrium. Three other important features of these models are that there is consistent partition of the large and the small scales for all above limiting cases, model sensitivity to the partition and production rate ratios and sensitivity of the eddy viscosity sensitive to the mean strain rates.The models developed have been tested through computations of a wide range of flows such as homogeneous shear and normally strained flows, fully developed channel flows, zero-pressure-gradient, adverse-pressure-gradient, favourable-pressure-gradient and oscillatory boundary layer flows, fully developed oscillatory and ramp up pipe flows and steady and pulsated backward-facing-step flows.The proposed NT1 and NT2 two-scale models have been shown to perform well in all test cases, being, among the benchmarked models tested, the models which best performed in the wide range of dimensionless shear values of homogeneous shear flows, the only linear-eddy-viscosity models which predicted well the turbulent kinetic energy in the normally strained cases and the only models which showed satisfactory sensitivity in predicting correctly the reattachment point in the unsteady backward facing step cases with different forcing frequencies. Although the development of the two-time-scale non-linear-eddy-viscosity models is still in progress, the interim versions proposed here have resulted in predictions of the Reynolds normal stresses similar to those of much more complex models in all test cases studied and in predictions of the turbulent kinetic energy in normally strained flows which are better than those of the other models tested in this study.
389

Stanovení viskozity pro různé typy splaškových vod / Determination of the viscosity of various types of wastewater

Glombová, Pavla January 2015 (has links)
The aim of this diploma thesis is a description of viscosity as a physical characteristic of liquids, next a description of projecting different types of sewer systems (pressure sewer system, vacuum sewer system and gravity sewer system). There was a range of density and viscosity of wastewater experimentally determined. These values were compared with ordinary values used in practice. The practical part of this work consists of sampling wastewater from different types of sewer systems and various localities. Chemical-biological analysis was realized on those samples with defined density, then dynamic viscosity was measured by the rotary viscometer for various temperatures. Measured data are evaluated. Finally, a calculation related to the design of sewers was made.
390

Pre-equilibrium evolution effects on relativistic heavy-ion collision observables

Liu, Jia January 2015 (has links)
No description available.

Page generated in 0.0324 seconds