• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 15
  • 14
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 149
  • 149
  • 42
  • 26
  • 26
  • 23
  • 18
  • 17
  • 16
  • 16
  • 15
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Calibration and evaluation of the secondary sensors for the Mini-EUSO space instrument

Ekelund, Jonah January 2018 (has links)
The Mini-EUSO (Mini - Extreme Universe Space Observatory) is an instrument for observation of ultra-high energy cosmic rays (UHECR) from space. It is designed to observe Earth from the international space station (ISS) in the ultra-violet (UV), visible (VIS) and near-infrared (NIR) light ranges. The UV sensor is the main sensor, designed and built by the EUSO collaboration. The visible and near-infrared sensors are secondary sensors. These are two cameras, FMVU-13S2C-CS and CMLN-13S2M-CV, from Point Grey Research Inc. The near-infrared light camera has a phosphor coating on the sensor to convert from near-infrared light to visible light, which is detectable by the camera's CCD. This thesis deals with the calibration and evaluation of the secondary sensors. This is done by first evaluating the bias and dark current for both cameras. After which a calibration is done using the light measurement sphere, located at the National Instituteof Polar Research (NIPR) in Midori-cho, Tachikawa-shi, Japan. Due to the low sensitivity of the near-infrared light camera, an evaluation of its ability to see celestialobjects are also performed. It is found that the visible light camera has a high bias with values around 5 ADU (Analog-to-Digital unit), but almost non-existing dark current, with mean values below 1 ADU. The visible light camera has good sensitivity for all the colors: red, green and blue. However, it is most sensitive to green. Due to this, it is easy to saturate the pixels with too much light. Therefore, saturation intensity was also examined for the shutter times of the visible light camera. This is found to be between 900μWm-2sr-1 and 1·107μWm-2sr-1, depending on color and shutter time. The near-infrared light camera is the opposite; it has a low bias with values below 1 ADU and a high dark current. The values of the dark current for the near-infrared light camera are highly dependent on the temperature of the camera. Mean values are below 1 ADU for temperatures around 310K, but mean values of almost 2 ADU at temperatures around 338K. The sensitivity of the near-infrared light camera is very low, therefore, the only way to detect a difference between the light levels of the light measurement sphere was to use a high ADC amplication gain. With this it was found that there is a power-law behavior, values between 1.33 and 1.50, of the relationship between pixel values and light intensity. This is likely due to the phosphor coating used to convert to visible light. When trying to detect celestial objects, the faintest object detected was Venus with a magnitude of less than -4.
62

Plasmonic Stimulation of Electrically Excitable Cells

Parveen, Fnu 31 March 2017 (has links)
There is a compelling need for the development of new sensory and neural prosthetic devices which are capable of more precise point stimulation. Current prosthetic devices suffer from the limitation of low spatial resolution due to the non-specific stimulation characteristics of electrical stimulation, i.e., the spread of electric fields generated. We present a visible light stimulation method for modulating the firing patterns of electrically-excitable cells using surface plasmon resonance phenomena. In in-vitro studies using gold (Au) nanoparticle-coated nanoelectrodes, we show that this method (substrate coated with nanoparticles) has potential for incorporating the technology into neural stimulation prosthetics, such as cochlear implants, with arbitrarily high spatial resolution. Au nanoparticles (NPs) were coated on micropipettes using aminosilane linkers; and these micropipettes were used for stimulating and inhibiting the action potential firing patterns of SH-SY5Y human neuroblastoma cells and neonatal cardiomyocytes. Our findings pave the way for development of biomedical implants and neural testing devices using nanoelectrodes capable of temporally and spatially precise excitation and inhibition of electrically-excitable cellular activity.
63

Synthesis and Evaluation of Photocatalytic Properties of BiOBr for Wastewater Treatment Applications

Ahmad, Ayla January 2013 (has links)
Visible light-driven photocatalysis has shown considerable potential in the area of clean and renewable energy, as well as in wastewater treatment. This thesis describes the synthesis, characterization and applicability of a visible-light active photocatalyst, bismuth oxybromide (BiOBr). The photocatalytic activity of BiOBr was investigated through its preparation via hydrothermal and solvothermal synthesis routes under various conditions. Hydrothermal catalyst was prepared using non template based method while for solvothermal synthesis CTAB was used as a template. Parameters of temperature and time of thermal treatment were optimized for each synthesis method and overall tests for catalyst dosage and recyclability were performed. An overall optimal route leading to high photocatalytic performance was also proposed based on the obtained results. Studies were also conducted to examine the applicability of optimally synthesized BiOBr in drinking water applications by studying catalyst-mediated disinfection of E. coli and degradation of phenol. Favourable results were obtained, confirming the prospective application of BiOBr as a viable photocatalyst for disinfection. Furthermore, the potential of enhancing BiOBr to further improve its performance is described through synthesis of a novel PdCl2/BiOBr based photocatalyst. Overall, the performance of BiOBr under various conditions in this study establishes its potential as a holistic photocatalyst and merits further development.
64

Etude, réalisation et optimisation d'un système de communication par lumière visible. : Application au domaine de l'automobile / Study, implementation and optimization of a visible light communications system. : Application to automotive field.

Cailean, Alin-Mihai 08 December 2014 (has links)
La problématique scientifique de cette thèse est centrée sur le développement decommunications par lumière visible (Visible Light Communications - VLC) dans lesapplications automobiles. En permettant la communication sans fil entre les véhicules, ou entreles véhicules et l’infrastructure routière, la sécurité et l'efficacité du transport peuvent êtreconsidérablement améliorées. Compte tenu des nombreux avantages de la technologie VLC,cette solution se présente comme une excellente alternative ou un complément pour lescommunications actuelles plutôt basées sur les technologies radio-fréquences traditionnelles.Pour réaliser ces travaux de recherche, un système VLC à faible coût pour applicationautomobile a été développé. Le système proposé vise à assurer une communication très robusteentre un émetteur VLC à base de LED et un récepteur VLC monté sur un véhicule. Pour l'étudedes communications véhicule à véhicule (V2V), l'émetteur a été développé sur la base d’un pharearrière rouge de voiture, tandis que pour l'étude des communications de l'infrastructure auvéhicule (I2V), l'émetteur a été développé sur la base d'un feu de circulation. Considérant lerécepteur VLC, le problème principal réside autour d’un capteur approprié, en mesured'améliorer le conditionnement du signal et de limiter les perturbations dues des conditionsenvironnementales. Ces différents points sont abordés dans la thèse, d’un point de vue simulationmais également réalisation du prototype.La validation expérimentale du système VLC a été réalisée dans différentes conditions etscénarii. Les résultats démontrent que la VLC peut être une technologie viable pour lesapplications envisagées. / The scientific problematic of this PhD is centered on the usage of Visible LightCommunications (VLC) in automotive applications. By enabling wireless communication amongvehicles and also with the traffic infrastructure, the safety and efficiency of the transportation canbe substantially increased. Considering the numerous advantages of the VLC technologyencouraged the study of its appropriateness for the envisioned automotive applications, as analternative and/or a complement for the traditional radio frequency based communications.In order to conduct this research, a low-cost VLC system for automotive application wasdeveloped. The proposed system aims to ensure a highly robust communication between a LEDbasedVLC emitter and an on-vehicle VLC receiver. For the study of vehicle to vehicle (V2V)communication, the emitter was developed based on a vehicle backlight whereas for the study ofinfrastructure to vehicle (I2V) communication, the emitter was developed based on a traffic light.Considering the VLC receiver, a central problem in this area is the design of a suitable sensorable to enhance the conditioning of the signal and to avoid disturbances due to the environmentalconditions, issues that are addressed in the thesis. The performances of a cooperative drivingsystem integrating the two components were evaluated as well.The experimental validation of the VLC system was performed in various conditions andscenarios. The results confirmed the performances of the proposed system and demonstrated thatVLC can be a viable technology for the considered applications. Furthermore, the results areencouraging towards the continuations of the work in this domain.
65

Advances In light-induced polymerizations: I. Shadow cure in free radical photopolymerizations, II. Experimental and modeling studies of photoinitiator systems for effective polymerizations with LEDs

Kitano, Hajime 01 July 2012 (has links)
Photopolymerization has become the standard for many coating and printing applications that require rapid curing at room temperature due to its potential to reduce volatile organic compound (VOC) emissions while providing a means for efficient manufacturing processes. These advantages could be useful in a variety of emerging applications, such as anisotropic conductive films (ACF) if photopolymerization could extend into relatively narrow shadow regions which are not directly illuminated, and if visible wavelengths that are not absorbed by polyimide films could be used to trigger the reaction. The broad objectives of this research are i) to examine the factors that determine the attainable extent of shadow cure in free radical polymerizations, and ii) to develop initiator systems effective for polymerization using visible light and light emitting diode (LED) lamps. Project I: Shadow Cure in Free Radical Photopolymerizations In this project, the extent of shadow cure in visible-light-induced free radical photopolymerization is investigated. A number of effective methods such as adding additives, utilizing a reflective stage, and increasing the light intensity are introduced. In addition, the use of fluorescent dyes in multi-component photoinitiator systems proved to be very effective for shadow cure because the fluorescent light emitted from the dye could irradiate the shadow region. When considering practical resins, mixtures of oligomers and monomers, the viscosity is the major barrier that must be overcome in order to achieve high conversion in the shadow regions using visible-light-induced multi-component photoinitiator systems. Hence, instead of using multi-component systems, a commercial visible-light-induced single-component photoinitiator is investigated. As a result, a high conversion in shadow regions of the viscous oligomer containing resin is achieved. Project II: Experimental and Modeling Studies of Photoinitiator Systems for Effective Polymerizations with LEDs In this project, various LED photocuring systems are investigated and characterized. The light intensities of LEDs become weaker as their peak emission wavelengths decrease. Therefore, to design the practical process of LED curing, the effect of both the light intensity and the emission spectrum of the lamp must be considered. Photopolymerization for four representative UV photoinitiators with different LEDs are investigated experimentally and theoretically. The effective light source is dependent on the photoinitiators and several LEDs demonstrate high thin cure ability. The calculated results from a model display good qualitative correspondence with the experimental results. Various interesting suggestions are obtained using this model. For example, the commercialization of 355 nm LEDs might be able to superior photopolymerization compared to other currently available LED lamps.
66

III-nitride Photonic Integrated Circuit: Multi-section GaN Laser Diodes for Smart Lighting and Visible Light Communication

Shen, Chao 04 1900 (has links)
The past decade witnessed the rapid development of III-nitride light-emitting diodes (LEDs) and laser diodes (LDs), for smart lighting, visible-light communication (VLC), optical storage, and internet-of-things. Recent studies suggested that the GaN-based LDs, which is free from efficiency droop, outperform LEDs as a viable high-power light source. Conventionally, the InGaN-based LDs are grown on polar, c-plane GaN substrates. However, a relatively low differential gain limited the device performance due to a significant polarization field in the active region. Therefore, the LDs grown on nonpolar m-plane and semipolar (2021)-plane GaN substrates are posed to deliver high-efficiency owing to the entirely or partially eliminated polarization field. To date, the smart lighting and VLC functionalities have been demonstrated based on discrete devices, such as LDs, transverse-transmission modulators, and waveguide photodetectors. The integration of III-nitride photonic components, including the light emitter, modulator, absorber, amplifier, and photodetector, towards the realization of III-nitride photonic integrated circuit (PIC) offers the advantages of small-footprint, high-speed, and low power consumption, which has yet to be investigated. This dissertation presents the design, fabrication, and characterization of the multi-section InGaN laser diodes with integrated functionalities on semipolar (2021)-plane GaN substrates for enabling such photonic integration. The blue-emitting integrated waveguide modulator-laser diode (IWM-LD) exhibits a high modulation efficiency of 2.68 dB/V. A large extinction ratio of 11.3 dB is measured in the violet-emitting IWM-LD. Utilizing an integrated absorber, a high optical power (250mW), droop-free, speckle-free, and large modulation bandwidth (560MHz) blue-emitting superluminescent diode is reported. An integrated short-wavelength semiconductor optical amplifier with the laser diode at ~404 nm is demonstrated with a large gain of 5.32 dB at 6 V. A high-performance waveguide photodetector integrated LD at 405 nm sharing the single active region is presented, showing a significant large modulation bandwidth of 230 MHz. Thus these seamlessly integrated elements enable photonic IC at the visible wavelength for many important applications, such as smart lighting and display, optical communication, switching, clocking, and interconnect. The findings are therefore significant in developing an energy-saving platform technology that powers up human activities in a safe, health- and environmental-friendly manner.
67

BASE- AND VISIBLE LIGHT-PROMOTED ACTIVATION OF ARYL HALIDES UNDER TRANSITION-METAL-FREE CONDITIONS: APPLICATIONS AND MECHANISTIC STUDIES

Lei Pan (11740286) 20 December 2021 (has links)
Aromatic rings are universal motifs in natural products, pharmaceuticals, agrochemicals, and wide variety of organic materials. Aromatic halides are widely used as synthetic precursors in all these applications. Therefore, tremendous effort has been devoted to activate aryl halides in the past decades. The common methods to activate aryl halides require the use of transition-metals either in the form of Grignard reagents or through the use of transition-metal catalysis. <br>Over the past decade, photoredox catalysis has attracted significant attention as a cogent tool to develop greener synthetic processes and enable new molecular activation pathways under mild conditions. The most common of these approaches uses a photoredox/nickel dual catalytic cycle.<br>While this technology has greatly expanded the toolbox of organic chemists, this method still requires expensive rare-metal-based catalyts. Herein, we present a series of visible light-induced methods that are transition-metal-free. These new base-promoted transformations and their mechanistic work will be discussed in the following order:<br>We will first present our discovery that the dimsyl anion enables visible-light-promoted charge transfer in cross-coupling reactions of aryl halides. This work was applied to the synthesis of unsymmetrical diaryl chalcogenides. This method has a broad scope and functional group tolerance. An electron-donor-acceptor (EDA) complex between a dimsyl anion and the aryl halide is formed during the reaction and explains the observed aryl radical reactivity observed.<br>Then, a visible-light-induced borylation and phosphorylation of aryl halides under mild conditions was developed. Inspired by the mechanistic breakthroughs observed in the previous work. The mechanism of this reaction also involves an aryl radical that is presumed to be formed also via an EDA complex. In other work, a photo-induced phosphonation of ArI using N,N-diisopropylethylamine (DIPEA) and trialkyl phosphites was developed. This method uses very mild conditions, which allowed the preparation a wide variety of functionalized aromatic phosphonates derivatives, including natural products and medicinal compounds. Finally, a photochemical amination of amides was developed via a C(sp 3 )–H bond functionalization<br>process under visible light irradiation. This reaction showed good functional group compatibility without the use of external radical initiators, strong oxidants, or heat source. An EDA complex between N-bromophthalimide and LiOtBu is formed during the reaction.
68

On the Downlink Operation and Architecture Optimization of Multi-User VLC Systems

Abdelhady, Amr Mohamed Abdelaziz 11 1900 (has links)
The limited overcrowded radio frequency spectrum compelled researchers to ex plore higher frequency ranges for wireless transmission. In recent decades, visible light communications (VLC) have gained lots of research attention thanks to the abundant bandwidth and the existing lighting infrastructure they offer. Throughout this dissertation, we study the downlink of multi-user VLC systems with the aim of operation and architecture enhancement. In this context, we accommodate the chal lenges imposed by the visible light nature such as illumination requirements and mod ulation constraints. On the operation optimization front, we investigate three VLC setups: indoor single cell, outdoor energy harvesting enabled single cell, and indoor energy harvesting enabled multi-cell VLC systems. We formulate, and provide low complexity solutions to, resource allocation problems for each setup while accounting for scenario-tailored system objectives and quality of service requirements. For the first setup, the temporal average illumination is maintained fixed while maximizing the system SE and dynamic time-division-multiple-access is employed to serve users in an interference free setup. As for the second setup, owing to the favored joint lighting and SE maximization, we solve a multi-objective optimization problem accounting for both objectives. We found that the severity of the illumination - communications tradeoff increases as the available system power budget decreases or the minimum rate requirements get tighter. In the third setup, transmitters average currents and receivers fields of view tuning strategies are developed to maximize both spectral ef ficiency and energy harvesting objectives in an interference limited scenario, where spatial illumination uniformity is required. It is found that receivers fields of view tuning is substantial to performance enhancement in dense deployments. On the architecture optimization front, we propose two intelligent reflecting surfaces-aided VLC systems and derive their power density distribution in the receiver plane. In addition, we prove their power concentration capability and quantify their relative gain with respect to one another and with respect to the reflector-free VLC systems enjoying direct line of sight. Finally, we study the channel impulse response of the proposed reflecting systems and quantify the incurred delay spread through exact ex pression, simplified bounds and asymptotic expressions when the number of reflecting elements grows unboundedly.
69

TiO2/Cu2O composite based on TiO2 NTPC photoanode for photoelectrochemical (PEC) water splitting under visible light

Shi, Le 05 1900 (has links)
Water splitting through photoelectrochemical reaction is widely regarded as a major method to generate H2 , a promising source of renewable energy to deal with the energy crisis faced up to human being. Efficient exploitation of visible light in practice of water splitting with pure TiO2 material, one of the most popular semiconductor material used for photoelectrochemical water splitting, is still challenging. One dimensional TiO2 nanotubes is highly desired with its less recombination with the short distance for charge carrier diffusion and light-scattering properties. This work is based on TiO2 NTPC electrode by the optimized two-step anodization method from our group. A highly crystalized p-type Cu2O layer was deposited by optimized pulse potentiostatic electrochemical deposition onto TiO2 nanotubes to enhance the visible light absorption of a pure p-type TiO2 substrate and to build a p-n junction at the interface to improve the PEC performance. However, because of the real photocurrent of Cu2O is far away from its theoretical limit and also poor stability in the aqueous environment, a design of rGO medium layer was added between TiO2 nanotube and Cu2O layer to enhance the photogenerated electrons and holes separation, extend charge carrier diffusion length (in comparison with those of conventional pure TiO2 or Cu2O materials) which could significantly increase photocurrent to 0.65 mA/cm2 under visible light illumination (>420 nm) and also largely improve the stability of Cu2O layer, finally lead to an enhancement of water splitting performance.
70

Heterogeneous integration of optical wireless communications within next generation networks

Rahaim, Michael 28 October 2015 (has links)
Unprecedented traffic growth is expected in future wireless networks and new technologies will be needed to satisfy demand. Optical wireless (OW) communication offers vast unused spectrum and high area spectral efficiency. In this work, optical cells are envisioned as supplementary access points within heterogeneous RF/OW networks. These networks opportunistically offload traffic to optical cells while utilizing the RF cell for highly mobile devices and devices that lack a reliable OW connection. Visible light communication (VLC) is considered as a potential OW technology due to the increasing adoption of solid state lighting for indoor illumination. Results of this work focus on a full system view of RF/OW HetNets with three primary areas of analysis. First, the need for network densication beyond current RF small cell implementations is evaluated. A media independent model is developed and results are presented that provide motivation for the adoption of hyper dense small cells as complementary components within multi-tier networks. Next, the relationships between RF and OW constraints and link characterization parameters are evaluated in order to define methods for fair comparison when user-centric channel selection criteria are used. RF and OW noise and interference characterization techniques are compared and common OW characterization models are demonstrated to show errors in excess of 100x when dominant interferers are present. Finally, dynamic characteristics of hyper dense OW networks are investigated in order to optimize traffic distribution from a network-centric perspective. A Kalman Filter model is presented to predict device motion for improved channel selection and a novel OW range expansion technique is presented that dynamically alters coverage regions of OW cells by 50%. In addition to analytical results, the dissertation describes two tools that have been created for evaluation of RF/OW HetNets. A communication and lighting simulation toolkit has been developed for modeling and evaluation of environments with VLC-enabled luminaires. The toolkit enhances an iterative site based impulse response simulator model to utilize GPU acceleration and achieves 10x speedup over the previous model. A software defined testbed for OW has also been proposed and applied. The testbed implements a VLC link and a heterogeneous RF/VLC connection that demonstrates the RF/OW HetNet concept as proof of concept.

Page generated in 0.0377 seconds