• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 128
  • Tagged with
  • 139
  • 139
  • 21
  • 19
  • 19
  • 18
  • 18
  • 16
  • 15
  • 12
  • 11
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Development of an Eye Movmement Based Predictive Model for Discrimination of Parkinson's Disease from Other Parkinsonisms and Controls

Kannan, Mary Anisa 01 January 2019 (has links)
Purpose: Due to the neurological aspects of Parkinson’s Disease (PD) and the sensitivity of eye movements to neurological issues, eye tracking has the potential to be an objective biomarker with higher accuracy in diagnosis than current clinical standards. Currently when PD is diagnosed clinically, there is an accuracy of 74% when diagnosed by a general practitioner and 82% when diagnosed by a movement disorder specialist. This study was designed to: 1. Assess eye movements as a potential biomarker for Parkinson’s Disease. 2. Determine if eye movements can distinguish between Parkinson’s Disease and commonly confounded movement disorders with parkinsonian symptoms. 3. Determine if the eye movements of Rapid Eye Movement Behavior Disorder (RBD) patients who will likely convert to PD are distinguishable from healthy controls and if RBD patients have eye movements with similar features to PD. Methods: The eye movements of 160 subjects (43 healthy controls, 63 PD, 31 REM Behavior Disorder, and 22 Other Parkinsonisms) were recorded at 500 Hz and analyzed. Each subject performed five eye tracking tasks that included reflexive saccades, inhibition of reflexive saccades, predictive saccades, and reading. Based on an analysis of selected eye movement measurement parameters, a multivariable logistic regression model was developed that compared: PD vs. Control, PD vs. “Other”, PD vs RBD, and Control vs RBD. The resulting predictive model was then assessed for accuracy, sensitivity, and specificity. Results: After screening, the most statistically significant predictors that were included in the final multivariate model were: Site, Sex, Age, Age squared, UPDRS Score, mean absolute fixation velocity (Horizontal Step Task), saccadic duration, average saccadic velocity, and mean fixation velocity (Predictive Task). The model predicted with an accuracy of: 92% for Controls, 88% for PD, 86% for RBD, and 68% for Other Parkinsonisms. The model was best at distinguishing between PD and Other Parkinsomisms with an accuracy of 89% and RBD and Controls with an accuracy of 88%. Conclusion: This research found that specific combinations of eye tracking parameters from simple tasks can be used to distinguish between PD and commonly confounded movement disorders with parkinsonism symptoms. The model’s ability to distinguish between groups indicates that in a confirmatory study we should have relatively high accuracy in discriminating between groups. This model is able to accurately distinguish Controls from RBDs, however due to an insufficient number of follow-up visits to date, the current study is unable to confirm if the RBDs tested will convert to PD. With such high error rates in diagnosing PD clinically, this model is a potentially beneficial and could serve as an easy screening tool to add to the suite of diagnostic tests and improve clinician’s ability to diagnose accurately.
122

Binocular vision and three-dimensional motion perception : the use of changing disparity and inter-ocular velocity differences

Grafton, Catherine E. January 2011 (has links)
This thesis investigates the use of binocular information for motion-in-depth (MID) perception. There are at least two different types of binocular information available to the visual system from which to derive a perception of MID: changing disparity (CD) and inter-ocular velocity differences (IOVD). In the following experiments, we manipulate the availability of CD and IOVD information in order to assess the relative influence of each on MID judgements. In the first experiment, we assessed the relative effectiveness of CD and IOVD information for MID detection, and whether the two types of binocular information are processed by separate mechanisms with differing characteristics. Our results suggest that, both CD and IOVD information can be utilised for MID detection, yet, the relative dependence on either of these types of MID information varies between observers. We then went on to explore the contribution of CD and IOVD information to time-to-contact (TTC) perception, whereby an observer judges the time at which an approaching stimulus will contact them. We confirmed that the addition of congruent binocular information to looming stimuli can influence TTC judgements, but that there is no influence from binocular information indicating no motion. Further to this, we found that observers could utilise both CD and IOVD for TTC judgements, although once again, individual receptiveness to CD and/or IOVD information varied. Thus, we demonstrate that the human visual system is able to process both CD and IOVD information, but the influence of either (or both) of these cues on an individual’s perception has been shown to be mutually independent.
123

Development of an Accurate Differential Diagnostic Tool for Neurological Movement Disorders Utilizing Eye Movements

Gitchel, George Thomas, Jr 01 January 2015 (has links)
Parkinson’s disease and Essential tremor are the two most prevalent movement disorders in the world, but due to overlapping clinical symptoms, accurate differential diagnosis is difficult. As a result, approximately 60% of patients with movement disorders symptoms will have their diagnosis changed at least once before death. By their subjective nature, clinical exams are inherently imprecise, leading to the desire to create an objective, quantifiable test for movement disorders; a test that currently is elusive. Eye movements have been studied for a century, and are widely appreciated to be quantifiably affected in those with neurological disease. Through a collaborative effort between the VA hospital and VCU, over 1,000 movement disorder subjects had their eye movements recorded, utilizing an SR Research Eyelink 2. Patients with Parkinson’s disease exhibited an ocular gaze tremor during fixation, normal reflexive saccades, and reduced blink rate. Subjects with Essential tremor exhibited slowed saccadic dynamics, with increased latencies, in addition to a larger number of square wave jerk interruptions of otherwise stable fixation. After diagnostic features of each disorder were identified, prospective data collection could occur in a blinded fashion, and oculomotor features used to predict clinical diagnoses. It was determined that measures of fixation stability were capable of almost perfectly differentiating subjects with PD, and a novel, combined parameter was capable of similar results in ET. As a group, it appears as if these symptoms do not progress as the disease does, but subanalyses show that individual patients on constant pharmaceutical doses tracked over time do slightly change and progress. The near perfect separation of disease states suggest the ability of oculomotor recording to be a powerful biomarker to be used for the differential diagnosis of movement disorders. This tool could potentially impact and improve the lives of millions of people the world over.
124

The Role of MMPs, Smad3 and Heat Shock Proteins in TGF-β-Induced Anterior Subcapsular Cataract Development

Banh, Alice January 2007 (has links)
Transforming growth factor beta (TGF-β) has been implicated in anterior subcapsular cataract (ASC) development. In the first section of this thesis, an in-vitro rat lens model was used to determine the role of matrix metalloproteinases during TGF-β-induced ASC. In the second part, an in-vivo TGF-β transgenic and Smad3 knockout model was used to examine the role of Smad3 signaling pathway in TGF-β-induced ASC development. Lastly, an in-vitro rat lens epithelial explant culture model was used to investigate the potential role of heat shock proteins (Hsps) in TGF-β-induced epithelial-mesenchymal transition (EMT). Optical, morphological and molecular changes were analyzed in theses studies. Results from cultured rat lenses show a significant increase of back vertex distance variability (decrease of sharpness and focus) during ASC development. Inhibition of MMPs eliminated the TGF-β-induced plaque formation. Similarly, the overexpression of TGF-β1 in transgenic mouse lenses leads to ASC formation and a decrease in lens optical quality in comparison to wild-type lenses, while TGF-β1/Smad3-/- (null) lenses show diminished TGF-β-induced effects. The plaques formed in the TGF-β1/Smad3-/- lenses are substantially smaller than in the TGF-β1/Smad3+/+ lenses. The morphological and molecular changes of TGF-β2/FGF-2 treated rat lens epithelial explants are similar to those found in the TGF-β2 treated rat lenses and transgenic TGF-β1 mouse lenses. Heat shock treatment prior to TGF-β treatment significantly reduced the effects of EMT in rat LECs. In conclusion, MMP inhibition prevented TGF-β-induced ASC formation whereas heat shock treatment and the absence of Smad3 protein expression only reduced the severity of TGF-β-induced effects.
125

Ultraviolet B and blue light - induced phototoxic effects on retinal pigment epithelium using in vitro assays

Youn, Hyun-Yi January 2008 (has links)
It is well known that ultraviolet (UV) B (280-315 nm) and blue light (400-500 nm) radiation can produce phototoxic lesions in the neural retina and the retinal pigment epithelium (RPE). In the first section of this thesis, bovine lens cells (epithelium and superficial cortical fibre cell) and human retinal pigment epithelial (ARPE-19) cells were used to characterize in vitro changes following oxidative stress with UVB radiation in ocular lens optics and cellular function in terms of mitochondrial dynamics. In the second part, human retinal pigment epithelial (ARPE-19) cells and in vitro bioassays were used together to develop an in vitro approach for UV radiation-induced retinal toxicology research. In the third chapter, the in vitro approach developed above was used with intraocular lens (IOL) materials to evaluate the UV radiation blocking efficiency of commercially available IOL’s. Lastly, narrowband blue light irradiation and in vitro assays were used to determine more precisely the wavelengths of blue light responsible for photochemical lesions of the retina as an effort to contribute to future IOL designs. The results from mitochondrial dynamics of lens cells and RPE cells show significant decreases in mitochondrial movement after UVB irradiation in a dose dependent manner. Results obtained from four in vitro assays (Alamar blue assay, confocal microscopy for mitochondrial distribution and nucleic acids damage, phagocytotic activity assay) for evaluating the UVB-induced damage in ARPE-19 show significant decreases in cell viability as well as phagocytotic activity of RPE cells after UVB radiation. In addition, the results show that UV radiation can also induce the degradation of DNA/RNA and mitochondria of RPE cells in a dose dependent manner. The results of the UV blocking efficiency test of commercially available IOL materials show very effective UV blocking ability, allowing no cellular damage at all, in comparison to an IOL uncovered control cell. The results of three different wavelengths of blue light exposure show that only 400 nm blue light radiation can cause significant damage to RPE cells, while 420 and 435.8 nm blue light radiation cause no cellular damage at all. In conclusion, UVB and blue light radiation can cause phototoxic damage to the retinal pigment epithelium as a result of oxidative stress, and in vitro bioassays used for this research may offer a sensitive, and meaningful biomarker approach, not only for evaluating RPE function after oxidative and chemical stress, but also for evaluating IOL effectiveness.
126

Investigating The Impact of Multipurpose Solutions Released From Silicone Hydrogel Lenses on Corneal Epithelial Cells, in vitro

Tanti, Nicole-Christina January 2009 (has links)
Cytotoxicity of Multi-Purpose Solutions (MPS) is commonly tested on cells using diluted MPS or extracts from MPS soaked contact lenses. There is evidence that lens type will affect uptake and release of compounds contained in MPS. To assess the cytotoxicity of agents contained in MPS that would be released by contact lens, an in vitro “onlay” model was used, whereby MPS soaked silicone hydrogel lenses were directly set onto a confluent monolayer of corneal cells. Chapter 4 describes the impact of MPS released from contact lenses on immortalized human corneal epithelial cells. MPS-soaked lens interactions with cells were characterized by studying cell viability, cell adhesion and caspase assays. In Chapter 5, mechanisms of cell death induced by exposure to MPS from contact lenses were determined through evaluation of apoptotic markers, such as activation of caspase 3 and 9. In Chapter 6, the impact of the physical properties of silicone hydrogel lenses, specifically surface treatments, on cytotoxicity of MPS were investigated. The development of methods for characterizing the release of MPS from lenses, using absorbance spectra, is also described. The results indicate that exposure to contact lenses soaked in Opti-Free Express (OFX) and ReNu not only induces cell death in vitro, but also has an adverse effect on adhesion phenotype, suggesting that the remaining cells may have a compromised epithelial structure. Borate- buffered MPS were found to be more cytotoxic than phosphate-buffered base solutions. Investigation of the mechanisms of cell death revealed that ReNu and OFX induced corneal epithelial cell death in vitro using different pathways, whereby ReNu induced a necrotic pathway while OFX-induced cell death was mediated by the intrinsic pathway of apoptosis. The in vitro model was also able to identify differences between silicone hydrogels with different surface treatments: the different surface treatments and chemistries of silicone hydrogels lens will affect the release profile of MPS and hence their potential cytotoxicity. By investigating the induction of cell death processes by solution-lens combinations in vitro, we aim to prevent potential adverse effects in the cornea, which may ultimately compromise various visual and barrier functions. The findings indicate the wealth of information in vitro cytotoxicity testing can provide when evaluating the toxicological profile of MPS.
127

The Role of MMPs, Smad3 and Heat Shock Proteins in TGF-β-Induced Anterior Subcapsular Cataract Development

Banh, Alice January 2007 (has links)
Transforming growth factor beta (TGF-β) has been implicated in anterior subcapsular cataract (ASC) development. In the first section of this thesis, an in-vitro rat lens model was used to determine the role of matrix metalloproteinases during TGF-β-induced ASC. In the second part, an in-vivo TGF-β transgenic and Smad3 knockout model was used to examine the role of Smad3 signaling pathway in TGF-β-induced ASC development. Lastly, an in-vitro rat lens epithelial explant culture model was used to investigate the potential role of heat shock proteins (Hsps) in TGF-β-induced epithelial-mesenchymal transition (EMT). Optical, morphological and molecular changes were analyzed in theses studies. Results from cultured rat lenses show a significant increase of back vertex distance variability (decrease of sharpness and focus) during ASC development. Inhibition of MMPs eliminated the TGF-β-induced plaque formation. Similarly, the overexpression of TGF-β1 in transgenic mouse lenses leads to ASC formation and a decrease in lens optical quality in comparison to wild-type lenses, while TGF-β1/Smad3-/- (null) lenses show diminished TGF-β-induced effects. The plaques formed in the TGF-β1/Smad3-/- lenses are substantially smaller than in the TGF-β1/Smad3+/+ lenses. The morphological and molecular changes of TGF-β2/FGF-2 treated rat lens epithelial explants are similar to those found in the TGF-β2 treated rat lenses and transgenic TGF-β1 mouse lenses. Heat shock treatment prior to TGF-β treatment significantly reduced the effects of EMT in rat LECs. In conclusion, MMP inhibition prevented TGF-β-induced ASC formation whereas heat shock treatment and the absence of Smad3 protein expression only reduced the severity of TGF-β-induced effects.
128

Ultraviolet B and blue light - induced phototoxic effects on retinal pigment epithelium using in vitro assays

Youn, Hyun-Yi January 2008 (has links)
It is well known that ultraviolet (UV) B (280-315 nm) and blue light (400-500 nm) radiation can produce phototoxic lesions in the neural retina and the retinal pigment epithelium (RPE). In the first section of this thesis, bovine lens cells (epithelium and superficial cortical fibre cell) and human retinal pigment epithelial (ARPE-19) cells were used to characterize in vitro changes following oxidative stress with UVB radiation in ocular lens optics and cellular function in terms of mitochondrial dynamics. In the second part, human retinal pigment epithelial (ARPE-19) cells and in vitro bioassays were used together to develop an in vitro approach for UV radiation-induced retinal toxicology research. In the third chapter, the in vitro approach developed above was used with intraocular lens (IOL) materials to evaluate the UV radiation blocking efficiency of commercially available IOL’s. Lastly, narrowband blue light irradiation and in vitro assays were used to determine more precisely the wavelengths of blue light responsible for photochemical lesions of the retina as an effort to contribute to future IOL designs. The results from mitochondrial dynamics of lens cells and RPE cells show significant decreases in mitochondrial movement after UVB irradiation in a dose dependent manner. Results obtained from four in vitro assays (Alamar blue assay, confocal microscopy for mitochondrial distribution and nucleic acids damage, phagocytotic activity assay) for evaluating the UVB-induced damage in ARPE-19 show significant decreases in cell viability as well as phagocytotic activity of RPE cells after UVB radiation. In addition, the results show that UV radiation can also induce the degradation of DNA/RNA and mitochondria of RPE cells in a dose dependent manner. The results of the UV blocking efficiency test of commercially available IOL materials show very effective UV blocking ability, allowing no cellular damage at all, in comparison to an IOL uncovered control cell. The results of three different wavelengths of blue light exposure show that only 400 nm blue light radiation can cause significant damage to RPE cells, while 420 and 435.8 nm blue light radiation cause no cellular damage at all. In conclusion, UVB and blue light radiation can cause phototoxic damage to the retinal pigment epithelium as a result of oxidative stress, and in vitro bioassays used for this research may offer a sensitive, and meaningful biomarker approach, not only for evaluating RPE function after oxidative and chemical stress, but also for evaluating IOL effectiveness.
129

Investigating The Impact of Multipurpose Solutions Released From Silicone Hydrogel Lenses on Corneal Epithelial Cells, in vitro

Tanti, Nicole-Christina January 2009 (has links)
Cytotoxicity of Multi-Purpose Solutions (MPS) is commonly tested on cells using diluted MPS or extracts from MPS soaked contact lenses. There is evidence that lens type will affect uptake and release of compounds contained in MPS. To assess the cytotoxicity of agents contained in MPS that would be released by contact lens, an in vitro “onlay” model was used, whereby MPS soaked silicone hydrogel lenses were directly set onto a confluent monolayer of corneal cells. Chapter 4 describes the impact of MPS released from contact lenses on immortalized human corneal epithelial cells. MPS-soaked lens interactions with cells were characterized by studying cell viability, cell adhesion and caspase assays. In Chapter 5, mechanisms of cell death induced by exposure to MPS from contact lenses were determined through evaluation of apoptotic markers, such as activation of caspase 3 and 9. In Chapter 6, the impact of the physical properties of silicone hydrogel lenses, specifically surface treatments, on cytotoxicity of MPS were investigated. The development of methods for characterizing the release of MPS from lenses, using absorbance spectra, is also described. The results indicate that exposure to contact lenses soaked in Opti-Free Express (OFX) and ReNu not only induces cell death in vitro, but also has an adverse effect on adhesion phenotype, suggesting that the remaining cells may have a compromised epithelial structure. Borate- buffered MPS were found to be more cytotoxic than phosphate-buffered base solutions. Investigation of the mechanisms of cell death revealed that ReNu and OFX induced corneal epithelial cell death in vitro using different pathways, whereby ReNu induced a necrotic pathway while OFX-induced cell death was mediated by the intrinsic pathway of apoptosis. The in vitro model was also able to identify differences between silicone hydrogels with different surface treatments: the different surface treatments and chemistries of silicone hydrogels lens will affect the release profile of MPS and hence their potential cytotoxicity. By investigating the induction of cell death processes by solution-lens combinations in vitro, we aim to prevent potential adverse effects in the cornea, which may ultimately compromise various visual and barrier functions. The findings indicate the wealth of information in vitro cytotoxicity testing can provide when evaluating the toxicological profile of MPS.
130

Investigations on the Reptilian Spectacle

van Doorn, Kevin January 2012 (has links)
The eyes of snakes and most geckos, as well as a number of other disparate squamate taxa, are shielded beneath a layer of transparent integument referred to as the “reptilian spectacle.” Derived from the embryonic fusion of palpebral tissues, the spectacle contains a number of specializations of the skin to benefit vision while still allowing it to function as the primary barrier to the environment. For example, in nearly all species that possess it, it is markedly thinned compared to the surrounding integument and its keratinized scale is optically transparent. While the spectacle may thus seem ideally adapted to vision in allowing the eyes to be always unoccluded, it does have a few drawbacks. One such drawback is its vascularity, the implications of which are still not fully understood, but are explored herein. As no recent synthesis exists of the body of knowledge on reptilian spectacles, the first chapter of this thesis consists of a review of spectacle anatomy, physiology, adaptive significance and evolution to help put into context the following chapters that present original research. The second chapter describes the dynamics of blood flow through the spectacle vasculature of colubrid snakes, demonstrating three main points: (1) that the spectacle vasculature exhibits cycles of regular dilation and constriction, (2) that the visual perception of a threat induces vasoconstriction of its vessels, and (3) that spectacle vessels remain dilated throughout the renewal phase. The implications of these points are discussed. The third chapter describes the spectral transmittance of the shed spectacle scale, the only keratinized structure in the animal kingdom to contribute to the dioptric apparatus of the eye, as well as its thickness. Spectacle scale transmittance and thickness was found to differ dramatically between snakes and geckos and found in snakes to vary between families. The adaptive significance of the observed variation is discussed. The fourth chapter describes biochemical analyses of the shed spectacle scales of snakes and geckos and compares their composition to other scales in the integument. Spectacle scales were found to differ significantly from other scales in their keratin composition, and gecko spectacle scales in particular were found to lack ß keratin, that hard corneous protein thought to be common to all reptile scales. The concluding chapter will discuss where this research has brought the state of our knowledge on the spectacle and offers thoughts on potentially useful avenues for further research.

Page generated in 0.0839 seconds