Spelling suggestions: "subject:"human corneal epithelial cells"" "subject:"human corneal epithelial wells""
1 |
Investigating The Impact of Multipurpose Solutions Released From Silicone Hydrogel Lenses on Corneal Epithelial Cells, in vitroTanti, Nicole-Christina January 2009 (has links)
Cytotoxicity of Multi-Purpose Solutions (MPS) is commonly tested on cells using diluted MPS or extracts from MPS soaked contact lenses. There is evidence that lens type will affect uptake and release of compounds contained in MPS. To assess the cytotoxicity of agents contained in MPS that would be released by contact lens, an in vitro “onlay” model was used, whereby MPS soaked silicone hydrogel lenses were directly set onto a confluent monolayer of corneal cells. Chapter 4 describes the impact of MPS released from contact lenses on immortalized human corneal epithelial cells. MPS-soaked lens interactions with cells were characterized by studying cell viability, cell adhesion and caspase assays. In Chapter 5, mechanisms of cell death induced by exposure to MPS from contact lenses were determined through evaluation of apoptotic markers, such as activation of caspase 3 and 9. In Chapter 6, the impact of the physical properties of silicone hydrogel lenses, specifically surface treatments, on cytotoxicity of MPS were investigated. The development of methods for characterizing the release of MPS from lenses, using absorbance spectra, is also described.
The results indicate that exposure to contact lenses soaked in Opti-Free Express (OFX) and ReNu not only induces cell death in vitro, but also has an adverse effect on adhesion phenotype, suggesting that the remaining cells may have a compromised epithelial structure. Borate- buffered MPS were found to be more cytotoxic than phosphate-buffered base solutions. Investigation of the mechanisms of cell death revealed that ReNu and OFX induced corneal epithelial cell death in vitro using different pathways, whereby ReNu induced a necrotic pathway while OFX-induced cell death was mediated by the intrinsic pathway of apoptosis. The in vitro model was also able to identify differences between silicone hydrogels with different surface treatments: the different surface treatments and chemistries of silicone hydrogels lens will affect the release profile of MPS and hence their potential cytotoxicity.
By investigating the induction of cell death processes by solution-lens combinations in vitro, we aim to prevent potential adverse effects in the cornea, which may ultimately compromise various visual and barrier functions. The findings indicate the wealth of information in vitro cytotoxicity testing can provide when evaluating the toxicological profile of MPS.
|
2 |
Investigating The Impact of Multipurpose Solutions Released From Silicone Hydrogel Lenses on Corneal Epithelial Cells, in vitroTanti, Nicole-Christina January 2009 (has links)
Cytotoxicity of Multi-Purpose Solutions (MPS) is commonly tested on cells using diluted MPS or extracts from MPS soaked contact lenses. There is evidence that lens type will affect uptake and release of compounds contained in MPS. To assess the cytotoxicity of agents contained in MPS that would be released by contact lens, an in vitro “onlay” model was used, whereby MPS soaked silicone hydrogel lenses were directly set onto a confluent monolayer of corneal cells. Chapter 4 describes the impact of MPS released from contact lenses on immortalized human corneal epithelial cells. MPS-soaked lens interactions with cells were characterized by studying cell viability, cell adhesion and caspase assays. In Chapter 5, mechanisms of cell death induced by exposure to MPS from contact lenses were determined through evaluation of apoptotic markers, such as activation of caspase 3 and 9. In Chapter 6, the impact of the physical properties of silicone hydrogel lenses, specifically surface treatments, on cytotoxicity of MPS were investigated. The development of methods for characterizing the release of MPS from lenses, using absorbance spectra, is also described.
The results indicate that exposure to contact lenses soaked in Opti-Free Express (OFX) and ReNu not only induces cell death in vitro, but also has an adverse effect on adhesion phenotype, suggesting that the remaining cells may have a compromised epithelial structure. Borate- buffered MPS were found to be more cytotoxic than phosphate-buffered base solutions. Investigation of the mechanisms of cell death revealed that ReNu and OFX induced corneal epithelial cell death in vitro using different pathways, whereby ReNu induced a necrotic pathway while OFX-induced cell death was mediated by the intrinsic pathway of apoptosis. The in vitro model was also able to identify differences between silicone hydrogels with different surface treatments: the different surface treatments and chemistries of silicone hydrogels lens will affect the release profile of MPS and hence their potential cytotoxicity.
By investigating the induction of cell death processes by solution-lens combinations in vitro, we aim to prevent potential adverse effects in the cornea, which may ultimately compromise various visual and barrier functions. The findings indicate the wealth of information in vitro cytotoxicity testing can provide when evaluating the toxicological profile of MPS.
|
3 |
Development of Sensitive In Vitro Assays to Assess the Ocular Toxicity Potential of Chemicals and Ophthalmic ProductsMcCanna, David January 2009 (has links)
The utilization of in vitro tests with a tiered testing strategy for detection of mild ocular irritants can reduce the use of animals for testing, provide mechanistic data on toxic effects, and reduce the uncertainty associated with dose selection for clinical trials. The first section of this thesis describes how in vitro methods can be used to improve the prediction of the toxicity of chemicals and ophthalmic products. The proper utilization of in vitro methods can accurately predict toxic threshold levels and reduce animal use in product development. Sections two, three and four describe the development of new sensitive in vitro methods for predicting ocular toxicity. Maintaining the barrier function of the cornea is critical for the prevention of the penetration of infections microorganisms and irritating chemicals into the eye. Chapter 2 describes the development of a method for assessing the effects of chemicals on tight junctions using a human corneal epithelial and canine kidney epithelial cell line. In Chapter 3 a method that uses a primary organ culture for assessing single instillation and multiple instillation toxic effects is described. The ScanTox system was shown to be an ideal system to monitor the toxic effects over time as multiple readings can be taken of treated bovine lenses using the nondestructive method of assessing for the lens optical quality. Confirmations of toxic effects were made with the utilization of the viability dye alamarBlue. Chapter 4 describes the development of sensitive in vitro assays for detecting ocular toxicity by measuring the effects of chemicals on the mitochondrial integrity of bovine cornea, bovine lens epithelium and corneal epithelial cells, using fluorescent dyes.
The goal of this research was to develop an in vitro test battery that can be used to accurately predict the ocular toxicity of new chemicals and ophthalmic formulations. By comparing the toxicity seen in vivo animals and humans with the toxicity response in these new in vitro methods, it was demonstrated that these in vitro methods can be utilized in a tiered testing strategy in the development of new chemicals and ophthalmic formulations.
|
4 |
Development of Sensitive In Vitro Assays to Assess the Ocular Toxicity Potential of Chemicals and Ophthalmic ProductsMcCanna, David January 2009 (has links)
The utilization of in vitro tests with a tiered testing strategy for detection of mild ocular irritants can reduce the use of animals for testing, provide mechanistic data on toxic effects, and reduce the uncertainty associated with dose selection for clinical trials. The first section of this thesis describes how in vitro methods can be used to improve the prediction of the toxicity of chemicals and ophthalmic products. The proper utilization of in vitro methods can accurately predict toxic threshold levels and reduce animal use in product development. Sections two, three and four describe the development of new sensitive in vitro methods for predicting ocular toxicity. Maintaining the barrier function of the cornea is critical for the prevention of the penetration of infections microorganisms and irritating chemicals into the eye. Chapter 2 describes the development of a method for assessing the effects of chemicals on tight junctions using a human corneal epithelial and canine kidney epithelial cell line. In Chapter 3 a method that uses a primary organ culture for assessing single instillation and multiple instillation toxic effects is described. The ScanTox system was shown to be an ideal system to monitor the toxic effects over time as multiple readings can be taken of treated bovine lenses using the nondestructive method of assessing for the lens optical quality. Confirmations of toxic effects were made with the utilization of the viability dye alamarBlue. Chapter 4 describes the development of sensitive in vitro assays for detecting ocular toxicity by measuring the effects of chemicals on the mitochondrial integrity of bovine cornea, bovine lens epithelium and corneal epithelial cells, using fluorescent dyes.
The goal of this research was to develop an in vitro test battery that can be used to accurately predict the ocular toxicity of new chemicals and ophthalmic formulations. By comparing the toxicity seen in vivo animals and humans with the toxicity response in these new in vitro methods, it was demonstrated that these in vitro methods can be utilized in a tiered testing strategy in the development of new chemicals and ophthalmic formulations.
|
Page generated in 0.0644 seconds