• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Mutagenic Activity of High-Energy Explosives; Contaminants of Concern at Military Training Sites

McAllister, Jennifer E. 24 August 2011 (has links)
The genotoxicity of energetic compounds (i.e., explosives) that are known to be present in contaminated soils at military training sites has not been extensively investigated. Thus, the Salmonella mutagenicity and Muta(TM)Mouse assays were employed as in vitro assays to examine the mutagenic activity of twelve explosive compounds, as well as three soil samples from Canadian Forces Base Petawawa. Salmonella analyses employed strains TA98 (frameshift mutations) and TA100 (base-pair substitution mutations), as well as the metabolically-enhanced YG1041 (TA98 background) and YG1042 (TA100 background), with and without exogenous metabolic activation (S9). For Salmonella analyses, the results indicate that ten of the explosive compounds were mutagenic, and consistently elicited direct-acting, base-pair substitution activity. All three soil samples were also observed to be mutagenic, eliciting direct-acting, frameshift activity. Mutagenic potencies were significantly higher on the metabolically-enhanced strains for all compounds and soil samples. For Muta(TM)Mouse analyses on FE1 cells, the results indicate that the majority of explosive compounds did not exhibit mutagenic activity. All three soil samples elicited significant positive responses (PET 1 and PET 3 without S9, and PET 2 with S9), and although there is some evidence of a concentration-related trend, the responses were weak. Correspondence of the mutagenic activity observed with the two assay systems, for both the explosive compounds and soil samples, was negligible. The differential response is likely due to differences in metabolic capacity between the two assay systems. Furthermore, it is likely that there are unidentified compounds present in these soil samples that are, at least in part, responsible for the observed mutagenic activity. Additional testing of other explosive compounds, as well as soil samples from other military training sites, using a variety of in vitro and in vivo assays, is warranted in order to reliably estimate mutagenic hazard and subsequently assess risk to human health.
2

The Mutagenic Activity of High-Energy Explosives; Contaminants of Concern at Military Training Sites

McAllister, Jennifer E. 24 August 2011 (has links)
The genotoxicity of energetic compounds (i.e., explosives) that are known to be present in contaminated soils at military training sites has not been extensively investigated. Thus, the Salmonella mutagenicity and Muta(TM)Mouse assays were employed as in vitro assays to examine the mutagenic activity of twelve explosive compounds, as well as three soil samples from Canadian Forces Base Petawawa. Salmonella analyses employed strains TA98 (frameshift mutations) and TA100 (base-pair substitution mutations), as well as the metabolically-enhanced YG1041 (TA98 background) and YG1042 (TA100 background), with and without exogenous metabolic activation (S9). For Salmonella analyses, the results indicate that ten of the explosive compounds were mutagenic, and consistently elicited direct-acting, base-pair substitution activity. All three soil samples were also observed to be mutagenic, eliciting direct-acting, frameshift activity. Mutagenic potencies were significantly higher on the metabolically-enhanced strains for all compounds and soil samples. For Muta(TM)Mouse analyses on FE1 cells, the results indicate that the majority of explosive compounds did not exhibit mutagenic activity. All three soil samples elicited significant positive responses (PET 1 and PET 3 without S9, and PET 2 with S9), and although there is some evidence of a concentration-related trend, the responses were weak. Correspondence of the mutagenic activity observed with the two assay systems, for both the explosive compounds and soil samples, was negligible. The differential response is likely due to differences in metabolic capacity between the two assay systems. Furthermore, it is likely that there are unidentified compounds present in these soil samples that are, at least in part, responsible for the observed mutagenic activity. Additional testing of other explosive compounds, as well as soil samples from other military training sites, using a variety of in vitro and in vivo assays, is warranted in order to reliably estimate mutagenic hazard and subsequently assess risk to human health.
3

The Mutagenic Activity of High-Energy Explosives; Contaminants of Concern at Military Training Sites

McAllister, Jennifer E. 24 August 2011 (has links)
The genotoxicity of energetic compounds (i.e., explosives) that are known to be present in contaminated soils at military training sites has not been extensively investigated. Thus, the Salmonella mutagenicity and Muta(TM)Mouse assays were employed as in vitro assays to examine the mutagenic activity of twelve explosive compounds, as well as three soil samples from Canadian Forces Base Petawawa. Salmonella analyses employed strains TA98 (frameshift mutations) and TA100 (base-pair substitution mutations), as well as the metabolically-enhanced YG1041 (TA98 background) and YG1042 (TA100 background), with and without exogenous metabolic activation (S9). For Salmonella analyses, the results indicate that ten of the explosive compounds were mutagenic, and consistently elicited direct-acting, base-pair substitution activity. All three soil samples were also observed to be mutagenic, eliciting direct-acting, frameshift activity. Mutagenic potencies were significantly higher on the metabolically-enhanced strains for all compounds and soil samples. For Muta(TM)Mouse analyses on FE1 cells, the results indicate that the majority of explosive compounds did not exhibit mutagenic activity. All three soil samples elicited significant positive responses (PET 1 and PET 3 without S9, and PET 2 with S9), and although there is some evidence of a concentration-related trend, the responses were weak. Correspondence of the mutagenic activity observed with the two assay systems, for both the explosive compounds and soil samples, was negligible. The differential response is likely due to differences in metabolic capacity between the two assay systems. Furthermore, it is likely that there are unidentified compounds present in these soil samples that are, at least in part, responsible for the observed mutagenic activity. Additional testing of other explosive compounds, as well as soil samples from other military training sites, using a variety of in vitro and in vivo assays, is warranted in order to reliably estimate mutagenic hazard and subsequently assess risk to human health.
4

The Mutagenic Activity of High-Energy Explosives; Contaminants of Concern at Military Training Sites

McAllister, Jennifer E. January 2011 (has links)
The genotoxicity of energetic compounds (i.e., explosives) that are known to be present in contaminated soils at military training sites has not been extensively investigated. Thus, the Salmonella mutagenicity and Muta(TM)Mouse assays were employed as in vitro assays to examine the mutagenic activity of twelve explosive compounds, as well as three soil samples from Canadian Forces Base Petawawa. Salmonella analyses employed strains TA98 (frameshift mutations) and TA100 (base-pair substitution mutations), as well as the metabolically-enhanced YG1041 (TA98 background) and YG1042 (TA100 background), with and without exogenous metabolic activation (S9). For Salmonella analyses, the results indicate that ten of the explosive compounds were mutagenic, and consistently elicited direct-acting, base-pair substitution activity. All three soil samples were also observed to be mutagenic, eliciting direct-acting, frameshift activity. Mutagenic potencies were significantly higher on the metabolically-enhanced strains for all compounds and soil samples. For Muta(TM)Mouse analyses on FE1 cells, the results indicate that the majority of explosive compounds did not exhibit mutagenic activity. All three soil samples elicited significant positive responses (PET 1 and PET 3 without S9, and PET 2 with S9), and although there is some evidence of a concentration-related trend, the responses were weak. Correspondence of the mutagenic activity observed with the two assay systems, for both the explosive compounds and soil samples, was negligible. The differential response is likely due to differences in metabolic capacity between the two assay systems. Furthermore, it is likely that there are unidentified compounds present in these soil samples that are, at least in part, responsible for the observed mutagenic activity. Additional testing of other explosive compounds, as well as soil samples from other military training sites, using a variety of in vitro and in vivo assays, is warranted in order to reliably estimate mutagenic hazard and subsequently assess risk to human health.
5

Strategies towards the synthesis of 4-(3-methyl-but-1-enyl)-3,5,3',4'-tetrahydroxystilbene (arachidin-1) and resveratrol analogues

Olusegun-Osoba, Elizabeth Oluwakemi January 2015 (has links)
Stilbene phytoalexins such as resveratrol, 1, and the arachidins, including arachidin-1,2, are naturally synthesised by peanut (Arachis hypogaea) plants. The peanut phytoalexins are polyphenolic compounds consisting of a stilbene backbone, with a number of derivatives also possessing a prenyl moiety. These distinctive phytoalexins have gained attention, as they exhibit various biological activities, for instance arachidin-1, 2, has been reported to be more potent than resveratrol, 1, in the inhibition of lipopolysaccharide-induced expression of cyclooxygenase-2 (COX-2) and COX-2 mRNA, in vitro at doses that were low in cytotoxicity. Additionally the various arachidins have recently been shown to exhibit their anti-inflammatory properties, through the inhibition of a number of inflammatory mediator pathways. In this work, various routes into the synthesis of arachidin-1, 2, are described, via use of the Horner-Wadsworth-Emmons (HWE) reaction. Three different methodologies were explored, the first approach involving silyl ether (TIPS or TBDMS) protected benzaldehydes, proved unsuccessful due to cleavage of the silyl ether protecting groups, in basic and/or acidic conditions. This led to an alternative approach, whereby formation of the stilbene backbone proceeded via the regioselective demethylation of an acetal in the presence of sodium metal, subsequent electrophilic substitution using iodomethane and finally acetal hydrolysis of the acetal, gave the isolated aldehyde in moderate yield (52 %). Coupling of the aldehyde with the substituted benzylphosphonate, via the HWE reaction gave the desired trans-stilbene in good yield (86 %), however incorporation of the prenyl side chain proved to be challenging via the Wohl-Ziegler bromination. Further adaptation of the aforementioned route, whereby alkylation using diethyl iodomethylphosphonate, enabled the incorporation of the prenyl moiety and the subsequent construction of the trans-stilbene backbone, gave the 4-(3-methyl-but-1- enyl)-3,5,3',4'-tetramethoxystilbene, 3, albeit in poor yield (47 %). The final step involving demethylation using BBr3 gave arachidin-1, 2, also in poor yield (30 %), nevertheless this approach has been proved to be a successful route for the total synthesis of arachidin-1, 2, however optimised studies are required in order to obtain the desired compound in quantitative yields. Synthetic analogues of resveratrol, 1, are also known for their biological activities, including anti-inflammatory and chemopreventative properties. Recently, the anti-proliferative activity of a number of stilbenesulfonamides, against the National Cancer Institute's 60 (NCI-60) human tumour cell line has been reported. Furthermore, the anti-inflammatory effects of novel heterocyclic methylsulfone and sulfonamide analogues, via inhibition of the COX-2 protein have also been published, however both synthetic routes described require a total of six or seven steps, from the sulfanilamide and are limited to the synthesis of primary sulphonamides (SO2NH2). In this work, an efficient three step synthesis has been designed and successfully implemented, proceeding via chlorosulfonation of diethyl benzylphosphonate, to form the sulfonyl chloride intermediate. Aminolysis of the sulfonyl chloride intermediate was then performed, using a range of primary, secondary and cyclic alkyl amines, as well as aromatic amines; including ammonia, dimethylamine, morpholine and diphenylamine. Finally, formation of the stilbene backbone with various substituted aldehydes, via the HWE reaction offered a short, versatile and alternative route to the synthesis of novel primary, secondary and tertiary trans-stilbene benzenesulfonamides and heterocyclic analogues, in yields of 42 - 100 %. The activity of a selection of the synthesised stilbene benzenesulfonamides was evaluated against the human lung adenocarcinoma epithelial cell line (A549). Amongst the compounds tested, analysis of the data showed that the novel analogue, 4, was found to be the most potent compound, with a GI50 of 0.1 μM. Comparison with the previously published data found analogue, 4, to be approximately 500-fold more potent than the lead compound resveratrol, 1, (GI50 = 51.64 μM) and approximately twice as potent than 5-fluorouracil (GI50 = 0.189μM), a chemotherapy drug used to treat various forms of cancer 8. Overall, these results demonstrate that the total synthesis of trans-arachidin-1, 2, can be achieved via a five step methodology. A versatile route to the synthesis of novel stilbene benzenesulfonamides has also been successfully achieved, amongst the compounds synthesised one appears to show promising anticancer activity, and warrants further investigation (i.e. in vitro studies using other cancer cell lines, and the synthesis of additional compounds using analogue, 4, as a lead compound).
6

Development of Sensitive In Vitro Assays to Assess the Ocular Toxicity Potential of Chemicals and Ophthalmic Products

McCanna, David January 2009 (has links)
The utilization of in vitro tests with a tiered testing strategy for detection of mild ocular irritants can reduce the use of animals for testing, provide mechanistic data on toxic effects, and reduce the uncertainty associated with dose selection for clinical trials. The first section of this thesis describes how in vitro methods can be used to improve the prediction of the toxicity of chemicals and ophthalmic products. The proper utilization of in vitro methods can accurately predict toxic threshold levels and reduce animal use in product development. Sections two, three and four describe the development of new sensitive in vitro methods for predicting ocular toxicity. Maintaining the barrier function of the cornea is critical for the prevention of the penetration of infections microorganisms and irritating chemicals into the eye. Chapter 2 describes the development of a method for assessing the effects of chemicals on tight junctions using a human corneal epithelial and canine kidney epithelial cell line. In Chapter 3 a method that uses a primary organ culture for assessing single instillation and multiple instillation toxic effects is described. The ScanTox system was shown to be an ideal system to monitor the toxic effects over time as multiple readings can be taken of treated bovine lenses using the nondestructive method of assessing for the lens optical quality. Confirmations of toxic effects were made with the utilization of the viability dye alamarBlue. Chapter 4 describes the development of sensitive in vitro assays for detecting ocular toxicity by measuring the effects of chemicals on the mitochondrial integrity of bovine cornea, bovine lens epithelium and corneal epithelial cells, using fluorescent dyes. The goal of this research was to develop an in vitro test battery that can be used to accurately predict the ocular toxicity of new chemicals and ophthalmic formulations. By comparing the toxicity seen in vivo animals and humans with the toxicity response in these new in vitro methods, it was demonstrated that these in vitro methods can be utilized in a tiered testing strategy in the development of new chemicals and ophthalmic formulations.
7

Development of Sensitive In Vitro Assays to Assess the Ocular Toxicity Potential of Chemicals and Ophthalmic Products

McCanna, David January 2009 (has links)
The utilization of in vitro tests with a tiered testing strategy for detection of mild ocular irritants can reduce the use of animals for testing, provide mechanistic data on toxic effects, and reduce the uncertainty associated with dose selection for clinical trials. The first section of this thesis describes how in vitro methods can be used to improve the prediction of the toxicity of chemicals and ophthalmic products. The proper utilization of in vitro methods can accurately predict toxic threshold levels and reduce animal use in product development. Sections two, three and four describe the development of new sensitive in vitro methods for predicting ocular toxicity. Maintaining the barrier function of the cornea is critical for the prevention of the penetration of infections microorganisms and irritating chemicals into the eye. Chapter 2 describes the development of a method for assessing the effects of chemicals on tight junctions using a human corneal epithelial and canine kidney epithelial cell line. In Chapter 3 a method that uses a primary organ culture for assessing single instillation and multiple instillation toxic effects is described. The ScanTox system was shown to be an ideal system to monitor the toxic effects over time as multiple readings can be taken of treated bovine lenses using the nondestructive method of assessing for the lens optical quality. Confirmations of toxic effects were made with the utilization of the viability dye alamarBlue. Chapter 4 describes the development of sensitive in vitro assays for detecting ocular toxicity by measuring the effects of chemicals on the mitochondrial integrity of bovine cornea, bovine lens epithelium and corneal epithelial cells, using fluorescent dyes. The goal of this research was to develop an in vitro test battery that can be used to accurately predict the ocular toxicity of new chemicals and ophthalmic formulations. By comparing the toxicity seen in vivo animals and humans with the toxicity response in these new in vitro methods, it was demonstrated that these in vitro methods can be utilized in a tiered testing strategy in the development of new chemicals and ophthalmic formulations.

Page generated in 0.1086 seconds