• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Penetrační testování bezpečnosti informačních systémů / Information systems security penetration testing

Klíma, Tomáš January 2012 (has links)
The aim of this dissertation thesis is to develop new methodology of information systems penetration testing based on analysis of current methodologies and the role of penetration tests in context of IS/IT governance. Integral part of this aim is evaluation of the methodology. The first part of the thesis is devoted to the presentation of history and current state of research in selected area, definiton of basic terms and introduction of role of the penetration tests. This part is followed by the review of relevant sources and comparative study of current methodologies with a goal to identify their weaknesses. Results from this study are further used as a basis for new methodology development. Classification of IS penetration tests types and testing scenarios are also included. The second part includes design of new methodology, at first its history, structure and principles are presented, then its framework is decribed in high level of detail. In the third part the reader can find (theoretical and practical) validation. The biggest scientific contribution is the methodology itself focused on managment of penetration tests (which is the area currently not sufficiently descibed). Secondary contribution is the extensive review and the comparative analysis of current methodologies. Contribution to the economic and technical (practical) application we can mainly see in the development of new methodology which enables companies to improve management of penetration tests (especially planning, operational management and implementation of countermeasures).
2

Farm Sanctuary: Creating a Space Where Theory Meets Practice

Grubbs, Jennifer Dora January 2008 (has links)
No description available.
3

Charakterizace chodců ve videu / Pedestrian Attribute Analysis

Studená, Zuzana January 2019 (has links)
This work deals with obtaining pedestrian information, which are captured by static, external cameras located in public, outdoor or indoor spaces. The aim is to obtain as much information as possible. Information such as gender, age and type of clothing, accessories, fashion style, or overall personality are obtained using using convolutional neural networks. One part of the work consists of creating a new dataset that captures pedestrians and includes information about the person's sex, age, and fashion style. Another part of the thesis is the design and implementation of convolutional neural networks, which classify the mentioned pedestrian characteristics. Neural networks evaluate pedestrian input images in PETA, FashionStyle14 and BUT Pedestrian Attributes datasets. Experiments performed over the PETA and FashionStyle datasets compare my results to various convolutional neural networks described in publications. Further experiments are shown on created BUT data set of pedestrian attributes.
4

Development of Sensitive In Vitro Assays to Assess the Ocular Toxicity Potential of Chemicals and Ophthalmic Products

McCanna, David January 2009 (has links)
The utilization of in vitro tests with a tiered testing strategy for detection of mild ocular irritants can reduce the use of animals for testing, provide mechanistic data on toxic effects, and reduce the uncertainty associated with dose selection for clinical trials. The first section of this thesis describes how in vitro methods can be used to improve the prediction of the toxicity of chemicals and ophthalmic products. The proper utilization of in vitro methods can accurately predict toxic threshold levels and reduce animal use in product development. Sections two, three and four describe the development of new sensitive in vitro methods for predicting ocular toxicity. Maintaining the barrier function of the cornea is critical for the prevention of the penetration of infections microorganisms and irritating chemicals into the eye. Chapter 2 describes the development of a method for assessing the effects of chemicals on tight junctions using a human corneal epithelial and canine kidney epithelial cell line. In Chapter 3 a method that uses a primary organ culture for assessing single instillation and multiple instillation toxic effects is described. The ScanTox system was shown to be an ideal system to monitor the toxic effects over time as multiple readings can be taken of treated bovine lenses using the nondestructive method of assessing for the lens optical quality. Confirmations of toxic effects were made with the utilization of the viability dye alamarBlue. Chapter 4 describes the development of sensitive in vitro assays for detecting ocular toxicity by measuring the effects of chemicals on the mitochondrial integrity of bovine cornea, bovine lens epithelium and corneal epithelial cells, using fluorescent dyes. The goal of this research was to develop an in vitro test battery that can be used to accurately predict the ocular toxicity of new chemicals and ophthalmic formulations. By comparing the toxicity seen in vivo animals and humans with the toxicity response in these new in vitro methods, it was demonstrated that these in vitro methods can be utilized in a tiered testing strategy in the development of new chemicals and ophthalmic formulations.
5

Development of Sensitive In Vitro Assays to Assess the Ocular Toxicity Potential of Chemicals and Ophthalmic Products

McCanna, David January 2009 (has links)
The utilization of in vitro tests with a tiered testing strategy for detection of mild ocular irritants can reduce the use of animals for testing, provide mechanistic data on toxic effects, and reduce the uncertainty associated with dose selection for clinical trials. The first section of this thesis describes how in vitro methods can be used to improve the prediction of the toxicity of chemicals and ophthalmic products. The proper utilization of in vitro methods can accurately predict toxic threshold levels and reduce animal use in product development. Sections two, three and four describe the development of new sensitive in vitro methods for predicting ocular toxicity. Maintaining the barrier function of the cornea is critical for the prevention of the penetration of infections microorganisms and irritating chemicals into the eye. Chapter 2 describes the development of a method for assessing the effects of chemicals on tight junctions using a human corneal epithelial and canine kidney epithelial cell line. In Chapter 3 a method that uses a primary organ culture for assessing single instillation and multiple instillation toxic effects is described. The ScanTox system was shown to be an ideal system to monitor the toxic effects over time as multiple readings can be taken of treated bovine lenses using the nondestructive method of assessing for the lens optical quality. Confirmations of toxic effects were made with the utilization of the viability dye alamarBlue. Chapter 4 describes the development of sensitive in vitro assays for detecting ocular toxicity by measuring the effects of chemicals on the mitochondrial integrity of bovine cornea, bovine lens epithelium and corneal epithelial cells, using fluorescent dyes. The goal of this research was to develop an in vitro test battery that can be used to accurately predict the ocular toxicity of new chemicals and ophthalmic formulations. By comparing the toxicity seen in vivo animals and humans with the toxicity response in these new in vitro methods, it was demonstrated that these in vitro methods can be utilized in a tiered testing strategy in the development of new chemicals and ophthalmic formulations.

Page generated in 0.4025 seconds