• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Viscosity, deformation and permeability of bubbly magma : applications to flow and degassing in volcanic conduits /

Rust, Alison C. January 2003 (has links)
Thesis (Ph. D.)--University of Oregon, 2003. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 190-205). Also available for download via the World Wide Web; free to University of Oregon users.
22

Climate impacts of stratospheric particle injection

Driscoll, Simon January 2014 (has links)
Geoengineering has attracted large attention over recent years as to being a possible way to ameliorate some of the effects of climate change. One of the proposals, involving injecting sulphate aerosols into the stratosphere in order to cool Earth's temperature back to pre-industrial levels, has been assessed as one of the leading geoengineering proposals. Despite this, large uncertainties remain in both the physical and social sciences. Small scale trials of sulphate aerosol injection are not seen as ways to provide large amounts of useful data to inform on the climate response to stratospheric sulphate aerosol loading (whilst also facing many social and ethical barriers). Large scale trials involving injecting amounts of aerosol more comparable to what would be required to cool the Earth's temperature back to pre-industrial levels are viewed as too risky. Assessments of the climate effects of sulphate aerosol geoengineering by the scientific community therefore have largely relied on climate modelling studies. The thesis begins by reviewing sulphate aerosol geoengineering and the modelling that have been conducted to date. In light of the need to verify modelling results with observations the thesis seeks to understand the effects of nature's analogue to sulphate aerosol geoengineering: large volcanic eruptions. When a volcano erupts it can inject large amounts of SO2 gas into the stratosphere, which then undergo conversion to form sulphate aerosol, cooling the Earth in a way analogous to sulphate aerosol engineering. The ability of the climate models submitted to the Coupled Model Intercomparison Project 5 (CMIP5) database is assessed, with a particular focus on dynamical changes in the Northern Hemisphere winter period. These models fail to capture the observed NH dynamical response following eruptions, which is of concern for the accuracy of geoengineering modelling studies that assess the atmospheric response to sulphate aerosol geoengineering. Simulations of volcanic eruptions are then performed with high-top and low-top configurations of the HadGEM2-CC climate model. The high-top version of HadGEM2-CC, with enhanced vertical resolution and model height, gives a markedly improved and statistically significant post-volcanic winter dynamical simulation to its low-top counterpart. The post-winter dynamical simulation in the high-top model agrees with the observed response following volcanic eruptions. Accordingly, mechanisms involved in the dynamical changes are analysed and it is concluded that the HadGEM2-CC high-top model would give more confident simulations of sulphate aerosol geoengineering over its low-top counterpart. Given the identification of a more suitable model for geoengineering simulations following extensive investigation, the final chapter analyses simulations of the HadGEM2-CC high-top model for asymmetries between the climate response to an immediate onset of geoengineering and a rapid cessation of geoengineering - known as a 'termination' of geoengineering. The project is summarised and discussed, and future work is proposed, involving a large host of projects.
23

Field and experimental studies of pyroclastic density currents and their associated deposits

Ritchie, Lucy Jane January 2001 (has links)
The transport and emplacement mechanisms of the highly energetic pyroclastic density current (PDC) generated in the blast style eruption of Soufriere Hills Volcano, Montserrat, on 26 December 1997 are examined through detailed lithological mapping and sedimentological analysis of the deposits. The PDC formed deposits which range in grain size from coarse breccias to fine ash, with distinctive bipartite layering and well-developed grading and stratification. On a large scale the PDC was highly erosive, sculpting large bedforms and depositing relatively thin deposits. However, locally, centimetre scale topographic protuberances were responsible for significant variations in deposit thickness, grain size, and the development of dune bedforms. The strong lateral and vertical lithofacies variations are attributed to well-developed density stratification, which formed during explosive expansion of the dome prior to PDC formation. Experimental modelling of stratified inertial gravity currents was carried out to investigate the effects of density stratification prior to release of the current. The degree of stratification governs the rate of mixing in the current, which in turn influences the velocity. Well·stratified currents initially move faster than homogenous currents but are slower in the latter stages of current propagation. The results have important implications for deposition from particle-laden flows, which may become stratified with coarser material concentrated at the base of the current. The role of PDCs jn the formation of unit US2-B, emplaced during the Upper Scoriae 2 eruption (79± 8 ka) on Santorini, Greece, was investigated through sedimentological analysis and mapping. Proximally, the unit exhibits features characteristic of emplacement from a flow, such as thickening into palaeochannels and erosive basal contacts. Distally, the unit is of uniform thickness and grain size parameters suggest the deposit is more characteristic of exnplacement from a fallout mechanism. Discrete lenses of fine-grained material within US2-B, and a gradational upper contact with PDC deposits suggest that there may have been contemporaneous deposition resulting the development of a hybrid deposit.
24

Effect of volcanic eruptions on the hydrological cycle

Iles, Carley Elizabeth January 2014 (has links)
Large explosive volcanic eruptions inject SO2 into the stratosphere where it is oxidised to sulphate aerosols which reflect sunlight. This causes a reduction in global temperature and precipitation lasting a few years. Here the robust features of this precipitation response are investigated, using superposed epoch analysis that combines results from multiple eruptions. The precipitation response is first analysed using the climate model HadCM3 compared to two gauge based land precipitation datasets. The analysis is then extended to a large suite of state-of-the art climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). This is the first multi-model study focusing on the precipitation response to volcanoes. The large ensemble allows analysis of a short satellite based dataset which includes ocean coverage. Finally the response of major world rivers to eruptions is examined using historical records. Whilst previous studies focus on the response of just a few rivers or global discharge to single eruptions, here the response of 50 major world rivers is averaged across multiple eruptions. Results are applicable in predicting the precipitation response to future eruptions and to geoengineering schemes that seek to counteract global warming through reducing incoming solar radiation. The main model-simulated features of the precipitation response include a significant global drying over both land and ocean, which is dominated by the wet tropical regions, whilst the dry tropical ocean regions get significantly wetter following eruptions. Monsoon rainfall decreases, whilst in response to individual eruptions the Intertropical Convergence Zone shifts away from the hemisphere with the greater concentration of volcanic aerosols. The ocean precipitation response is longer lived than that over land and correlates with near surface air temperature, whilst the land response correlates with aerosol optical depth and a reduction in land-ocean temperature gradient Many of these modelled features are also seen in observational data, including the decrease in global mean and wet tropical regions precipitation over land and the increase of precipitation over dry tropical ocean regions, all of which are significant in the boreal cold season. The land precipitation response features were robust to choice of dataset. Removing the influence of the El Nino Southern Oscillation (ENSO) reduces the magnitude of the volcanic response, as several recent eruptions coincided with El Nino events. However, results generally remain significant after subtraction of ENSO, at least in the cold season. Over ocean, observed results only match model expectations in the cold season, whilst data are noisy in the warm season. Results are too noisy in both seasons to confirm whether a long ocean precipitation response occurs. Spatial patterns of precipitation response agree well between observational datasets, including a decrease in precipitation over most monsoon regions. A positive North Atlantic Oscillation-like precipitation response can be seen in all datasets in boreal winter, but this is not captured by the models. A detection analysis is performed that builds on previous detection studies by focusing specifically on the influence of volcanoes. The influence of volcanism on precipitation is detectable using all three observational datasets in boreal winter, including for the first time in a dataset with ocean coverage, and marginally detectable in summer. However, the models underestimate the size of the winter response, with the discrepancy originating in the wet tropics. Finally, the number of major rivers that undergo a significant change in discharge following eruptions is slightly higher than expected by chance, including decreased flow in the Amazon, Congo, Nile, Orange, Ob and Yenisey. This proportion increases when only large or less humanly influenced basins are considered. Results are clearer when neighbouring basins are combined that undergo the same sign of CMIP5 simulated precipitation response. In this way a significant reduction in flow is detected for northern South American, central African and less robustly for high-latitude Asian rivers, along with a significant increase for southern South American and SW North American rivers, as expected from the model simulated precipitation response.
25

Looking beyond eruptions for an explanation of volcanic disasters : vulnerability in volcanic environments

Dibben, Christopher J. L. January 1999 (has links)
'Natural' disasters have traditionally been viewed as the result of an extreme physical environment. A radical backlash against this dominant view, in the nineteen seventies and eighties, moved the debate to the opposite extreme and in doing so replaced physical with social determinism. Vulnerability analysis is proposed as a methodology that bridges these extremes. It takes into account individual decision making, social milieu and physical hazard when describing human habitation in areas of volcanic activity. It is argued that vulnerability should be defined in terms of universal human needs in order to avoid it simply being a measure of the chance of death and injury or losing its meaning in the uncertainty of cultural relativism. Once vulnerability is identified it is important to explore why it has come to exist. A contextual theory of vulnerability change is presented. Vulnerability to volcanic activity was explored in the area around Mt. Etna in Sicily (Italy) and Furnas volcano San Miguel in the Azores (Portugal) using a case study methodology. This included: collecting data through interviews (semistructured and structured) and field surveying, utilising census and other secondary data sources, and examining historical documents and texts. The volcanic hazard on Mt. Etna is related to regular (4-7 years) effusive lava flows which threaten property and land rather than people. Living in a European state, it is likely that a victim of Mt. Etna will have their basic needs provided for in the long-term and therefore they are not vulnerable. In contrast the irregular explosive eruptions of Furnas, last eruption 1630, not only damage property and land but also endanger lives. The limited ability of individuals to protect themselves in the event of an eruption and organisations to aid them in this means that, in spite of state insurance, many around Furnas are vulnerable. The production of vulnerability around Etna and Furnas is strongly related to the socio-economic nature of the region and wider European and global contexts. Opportunities and constraints that exist across socio-physical space encourage behaviour and forms of life which, in tum, produce various levels of vulnerability. Individuals seem to cognitively diminish their perceptions of this threat within a context of social representations of low risk. They, and society as a whole, rarely seem to engage directly with the risk itself.
26

Estimating lava effusion rates from geostationary satellite thermal images : a novel time series analysis and linear inversion approach applied to the eruptions of Afar, Ethiopia, between 2007 and 2010

Barnie, Talfan Donald January 2015 (has links)
No description available.
27

Investigating palaeoatmospheric composition-climate interactions

Wade, David Christopher January 2018 (has links)
The composition of the atmosphere has changed substantially over Earth's history, with important implications for past climate. A number of case studies will be presented which employ coupled climate model simulations to assess the strength of these chemical feedbacks on the climate. The eruption of Mount Samalas in 1257 led to the largest stratospheric volcanic injection of aerosol precursor gases in the Common Era, however climate model simulations of the last millennium typically overestimate the resulting climatic cooling when compared with tree-ring proxy records. A novel configuration of the Met Office UM-UKCA climate model is presented which couples an atmosphere-ocean general circulation model to a rigorous treatment of the relevant atmospheric chemistry and microphysical aerosol processes. This permits the climate response to a particular stratospheric injection of reactive volatile gases to be quantified and for the first time to date applied to a historical volcanic eruption. This model configuration compares favourably to observational data for simulations of the 1991Mount Pinatubo eruption. Results from an ensemble of model simulations are presented, with different assumptions about the sulfur dioxide and halogen loadings based on a recent geochemical reconstruction. These show a muted climate response, in reasonable agreement with tree ring records. Emissions of halogenated compounds lead to an increase in the sulfur dioxide lifetime, widespread ozone depletion and a prolonged climatic cooling. Strong increases in incident ultraviolet radiation at Earth's surface also occur. Oxygen levels may have varied fromas little as 10% to as high as 35% in the Phanerozoic (541Ma - Present). An increase in atmospheric oxygen increases atmospheric mass which leads to a reduction in incident shortwave radiation at Earth's surface due to Rayleigh scattering. However, this is offset by an increase in the pressure broadening of greenhouse gas absorption lines. Dynamical feedbacks also lead to increased meridional heat transport, warming polar regions and cooling tropical regions. An increase in oxygen content using the HadCM3-BL and HadGEM3-AO climate models leads to a global mean surface air temperature increase for a pre-industrial Holocene base case, in agreement with idealised 1D and 2D modeling studies. Case studies from past climates are investigated using HadCM3-BL which show that in the warmest climates, increasing oxygen may lead to a temperature decrease, as the equilibrium climate sensitivity is lower. For the Maastrichtian (72.1 - 66.0Ma), increasing oxygen content leads to a better agreement with proxy reconstructions of surface temperature at that time irrespective of the carbon dioxide content. There is considerable uncertainty in the timing of the rise in atmospheric oxygen content from values around 1% in the Neoproterozoic (1000 Ma - 541 Ma) to the 10- 35% values inferred in the Phanerozoic with respect to two global glaciation episodes (717-635Ma). Results of simulations with HadCM3-BL which investigate the impact of oxygen content on the Neoproterozoic Snowball Earth glaciations are presented. These demonstrate that a smaller reduction in carbon dioxide content is required to initiate a Snowball Earth at low oxygen content. Geological evidence suggests the presence of a basaltic large igneous province before the Sturtian Snowball Earth episode. This could have caused episodes of paced explosive volcanism, injecting sulfate aerosol precursors into the stratosphere. Results of simulations to investigate the impact of different volcanic aerosol emission scenarios are presented. 500 Tg SO2 is investigated with a range of aerosol sizes. For aerosol size distributions consistent with the aerosol evolution in the aftermath of the Mount Pinatubo eruption, the Earth enters a Snowball Earth in between 30 and 80 years. Using a larger size of aerosols, consistent with a larger eruption, does not lead to a Snowball Earth. These simulations show that changes to the chemical composition of the atmosphere, whether reactive gases or bulk chemical composition may have played an important role in the past climate of Earth.
28

Hazard Vulnerability in Socio-Economic Context: An Example from Ecuador

Lane, Lucille Richards 14 March 2003 (has links)
How people pereceive the risks associated with natural hazards contributes to their willingness to take protective action. Such action may be constrained by prevailing socio-economic and place-specific conditions that restrict or inform the choice of protective measures available to the individual. Vulnerability to the impacts of extreme geophysical events increases when the range of alternatives is limited or misinformed. Many evacuees from a potentially violent volcanic eruption in Ecuador returned to their home town of Banos while it was still under an evacuation order in 2000 and considered to be a high risk area by officials. The research examined four main questions: (1) What economic conditions confronted Baños evacuees? (2) What political or other social events occurred while they were evacuated that limited their perceived range of options? (3) What information was available about prior eruptions of the volcano and other local natural hazards? and (4) What were the characteristics of the economic base of Baños? These questions were investigated using data from interviews with evacuees, government and non-governmental officials, census and other statistical information, scholarly texts and newspaper reports. The research suggests that economic conditions made it extremely difficult for people to relocate to other communities. When a violent eruption did not occur immediately, and few direct impacts of the eruptions were experienced in Baños, many people chose to return home in an effort to reestablish themselves economically. These people perceived the volcano hazard in Baños to be far less threatening than the economic destitution associated with evacuation. This perception may have been influenced by factors other than the socio-economic context, including efforts of political leaders and tourist business owners to effect the town's economic recovery. These efforts included an aggressive publicity campaign that minimized the risk posed by the volcano. Besides encouraging tourists to return, the campaign also encouraged evacuees to do so. Finally, among some residents, religious beliefs may have contributed to perceptions that they would not be harmed in the event of an explosive eruption.
29

Understanding aspects of andesitic dome-forming eruptions through the last 1000 yrs of volcanism at Mt. Taranaki, New Zealand : a dissertation presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Earth Science, Massey University, Palmerston North, New Zealand

Platz, Thomas January 2007 (has links)
Andesitic volcanoes are notorious for their rapid and unpredictable changes in eruptive style between and during volcanic events, a feature normally attributed to shallow crustal and intra-edifice magmatic processes. Using the example of eruptions during the last 1000 yrs at Mt. Taranaki (the Maero Eruptive Period), deposit sequences were studied to (1) understand lava dome formation and destruction, (2) interpret the causes of rapid shifts from extrusive to explosive eruption styles, and (3) to build a model of crustal magmatic processes that impact on eruption style. A new detailed reconstruction of this period identifies at least 10 eruptive episodes characterised by extrusive, lava dome- and lava flow-producing events and one sub- Plinian eruption. To achieve this, a new evaluation procedure was developed to purge glass datasets of contaminated mineral-glass analyses by using compositional diagrams of mineral incompatible-compatible elements. Along with careful examination of particle textures, this procedure can be broadly applied to build a higher degree of resolution in any tephrostratigraphic record. Geochemical contrasts show that the products of the latest Mt. Taranaki eruption, the remnant summit dome (Pyramid Dome) was not formed during the Tahurangi eruptive episode but extruded post-AD1755. Its inferred original maximum volume of 4.9×106 m3 (DRE) was formed by simultaneous endogenous and exogenous dome growth within days. Magma ascent and extrusion rates are estimated at =0.012 ms-1 and =6 m3s-1, respectively, based on hornblende textures. Some of the Maero-Period dome effusions were preceded by a vent-clearing phase producing layers of scattered lithic lapilli around the edifice [Newall Ash (a), Mangahume Lapilli, Pyramid Lapilli]. The type of dome failure controlled successive eruptive phases in most instances. The destruction of a pressurised dome either caused instantaneous but short-lived magmatic fragmentation (Newall and Puniho episodes), or triggered a directed blast-explosion (Newall episode), or initiated sustained magmatic fragmentation (Burrell Episode). The transition from dome effusion to a sustained, sub- Plinian eruption during the Burrell Lapilli (AD1655) episode was caused by unroofing a conduit of stalled magma, vertically segregated into three layers with different degrees of vesiculation and crystallisation. The resultant ejecta range from brown, grey and black coloured vesicular clasts to dense grey lithics. Bulk compositional variation of erupted clasts can be modelled by fractionation of hornblende, plagioclase, clinopyroxene, and Fe-Ti oxides. Pre-eruption magma ascent for the Maero Period events is assumed to begin at depths of c.9.5 km.
30

Physical and chemical signatures of degassing in volcanic systems /

Wright, Heather Michelle. January 2006 (has links)
Thesis (Ph. D.)--University of Oregon, 2006. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 162-173). Also available for download via the World Wide Web; free to University of Oregon users.

Page generated in 0.1193 seconds