Spelling suggestions: "subject:"evacuation"" "subject:"evacuating""
1 |
Evaluation de Service d’Evacuations Medicales Aeriennes de la Region Socio-Sanitaire 10BGodue, Charles January 1987 (has links)
Note:
|
2 |
The Use of Probabilistic Risk Functions and Linear Penalty Functions for Hospital Evacuation PlanningSoeffker, Ninja 20 November 2014 (has links)
In Bish et al. (2014), two approaches for the generation of hospital evacuation transportation plans were proposed: the minimization of the overall risk and the minimization of the evacuation duration. The resulting evacuation plans differ in terms of overall risk and duration, but also in the evacuation order of patients with different characteristics, the filling of hospital beds, and the assignments of the patients to the various vehicle types.
Due to the computational effort of the duration minimization, manipulations of the risk functions for the risk minimization approach were searched in this thesis such that the resulting evacuation plans approach the minimal duration without rules for the assignments of patients to vehicle types. It is possible to create risk functions such that the resulting plans have shorter durations than with the basic risk functions, but the overall risk increases and other properties of the plans change.
Furthermore, a new objective function was introduced in this thesis that minimizes an overall penalty function, where penalties are incurred for time intervals in which patients are at the evacuating hospital or being transported. The characteristics of the patients are considered by different weights in the penalty function. For the given problem instance, it is possible to choose penalty factors such that the overall risk is close to the minimal risk or to choose them such that the duration decreases. It is a simple approach with run times that are comparable to the risk minimization approach for the given problem instance. / Master of Science
|
3 |
Evaluating the Impacts of Connected Vehicle Technology on Evacuation EfficiencyBahaaldin, Karzan 01 December 2015 (has links)
No-notice evacuations of metropolitan areas can place significant demands on transportation infrastructure. In preparation, emergency managers and transportation engineers study potential demands and many create evacuation traffic management plans. The findings from a St. Louis Metro East evacuation study revealed some problematic areas of the transportation network. At these locations the traffic backed up during a simulated evacuation, caused a significant amount of delay, and increased the evacuation clearance time. An emerging paradigm called Connected Vehicle (CV) technology can provide real-time communication between vehicles in a traffic stream. The objectives of this research were to evaluate the impacts of CVs on evacuation from a downtown metropolitan area. The microsimulation software VISSIM was used to model the roadway network and the evacuation traffic. The model was built, calibrated and validated for studying the performance of traffic during the evacuation. This model helped researchers to find the time required to evacuate people in this area for different disaster scenarios. Because it is unlikely that vehicles equipped with CV technologies will become commonplace soon, the researcher tested different levels of deployment, also known as penetration rate. This study included penetration rates from 0 to 30 percent CVs; evaluating the average speed, average and total delays. The findings suggest significant reductions in total delays when CVs reached a penetration rate of 30 percent or greater. Results showed that the presence of CVs at a penetration rate of 30 percent could reduce the overall traffic delay by 60 percent over the evacuation period. A sensitivity analysis was conducted and the finding showed that a 10 percent increase in the penetration rate will significantly improve traffic flow. The findings of this study suggest that the communication capabilities of CVs can reduce delays and improve the traffic flow rate during a no-notice evacuation. Additionally, the benefits could be greater for evacuations with higher volumes, evacuations that last longer, and evacuations with higher proportions of CVs in the vehicle stream.
|
4 |
Μελέτη του ψυχρού πλάσματος που παράγεται σε ανομοιογενές πεδίο σε χαμηλή πίεση αερίουΤζανετής, Γεώργιος 25 May 2009 (has links)
Η διπλωματική εργασία που παρουσιάζεται παρακάτω έχει ως σκοπό τη μελέτη του ψυχρού πλάσματος που παράγεται σε ανομοιογενές ηλεκτρικό πεδίο ακίδα – πλάκα, διάκενου 1 cm και αρνητικής πολικότητας σε συνθήκες χαμηλής πίεσης ατμοσφαιρικού αέρα (5 έως 50 mbar).
Αρχικά γίνεται μία πρώτη γνωριμία με το πλάσμα και στη συνέχεια παρουσιάζονται στοιχεία θεωρίας των ηλεκτρικών εκκενώσεων. Το πλάσμα είναι προϊόν ηλεκτρικών εκκενώσεων μέσα σε αέρια, τα οποία από μονωτικά υλικά μετατρέπονται σε αγωγούς. Βάσει το βαθμό ιονισμού του, την ηλεκτρονική πυκνότητα και την ηλεκτρονική του θερμοκρασία, διακρίνεται σε ψυχρό, θερμικό και θερμό. Η παραγωγή του εξαρτάται από παράγοντες όπως το σύστημα τροφοδοσίας, η γεωμετρία του αντιδραστήρα και του διακένου όπως επίσης και τα χαρακτηριστικά του αερίου μέσου και βρίσκει εφαρμογές στην παραγωγή Laser, στην παρασκευή όζοντος, στην επεξεργασία υλικών και επιφανειών κτλ. Ακριβώς μετά, αναπτύσσονται στοιχεία θεωρίας των ηλεκτρικών εκκενώσεων όπως η θεωρία του Townsend, ο νόμος του Paschen και η ηλεκτρική εκκένωση χαμηλής πίεσης (Εκκένωση Αίγλης).
Στη συνέχεια παρουσιάζεται η πειραματική διάταξη και ο εξοπλισμός που χρησιμοποιήθηκε κατά τη διάρκεια του πειράματος ενώ μετά ακολουθούν οι μετρήσεις (Καμπύλες V-I και παλμογραφήματα του ρεύματος και του φωτοπολλαπλασιαστή).
Τέλος, συνοψίζονται χρήσιμα συμπεράσματα από την εργασία όπως ότι οι εκκενώσεις του πειράματος ήταν ευσταθείς για την αντίσταση φόρτου που επιλέξαμε, παρατηρήθηκε γραμμική σχέση της τάσης [V] και της πίεσης [P], εντοπίστηκαν παλμοί Trichel και παρατηρήθηκαν ομοιότητες στη συμπεριφορά με εκκενώσεις θετικής πολικότητας και ομογενούς ηλεκτρικού πεδίου. / The diplomatic work that is presented below has as aim the study of cold plasma that is produced in non-homogeneous electric field spike - plate, gap 1 cm and negative polarity in conditions of low pressure of atmospheric air (5 until 50 mbar).
Initially becomes a first acquaintance with plasma and afterwards is presented elements of theory of electric evacuations. The plasma is product of electric evacuations in gases, which from insulator materials are changed in conductors. From his degree of ionization, the electronic density and his electronic temperature, it is distinguished in cold, thermic and hot. His production depends on factors as the system of catering, the geometry of reactor and gap as also and the characteristics of gas of means and find applications in the production Laser, in production of ozone, in the treatment of materials and surfaces etc.
Precisely, are afterwards developed elements of theory of electric evacuations as the theory of Townsend, the law of Paschen and the electric evacuation of low pressure (Evacuation of Glamour).
Afterwards are presented the experimental provision and the equipment that was used at the duration of experiment while afterwards follow the measurements (curves V-I and oscillator graphs of the current and the photomultiplier).
Finally, are summarisen useful conclusions from the work that the evacuations of experiment were valid for the resistance of pressure that we selected, it was observed linear relation of Voltage [V] and Pressure [P], they were located vibrations Trichel and were observed resemblances in the behavior with evacuations of positive polarity and homogenous electric field.
|
5 |
Quantitative decision-making rules for the next generation of smarter evacuationsFry, John, Galla, T., Binner, J.M. 05 January 2020 (has links)
No
|
6 |
Transgender an At-Risk Population During and Following Emergencies and DisastersFontanez, Joshua Aaron 01 January 2019 (has links)
The experiences and needs of transgendered individuals immediately following a natural or human-caused disaster are largely ignored in practice and absent from previous academic literature. Using Schneider and Ingram's conceptualization of the social construction of target populations as a theoretical framework, the purpose of this study was to investigate the experiences and perspectives of transgendered people who sought shelter in the aftermath of a natural disaster in 2018. Data were collected through interviews with 12 displaced, transgendered individuals to explore their experiences while staying at shelters in 2018. Interview data were transcribed, inductively coded, and then a thematic analysis procedure was applied. According to the key findings, participants perceived internal threats at shelters, which may have prohibited or restricted others in the same population from seeking shelter assistance. Additionally, participants perceived that a lack of understanding of the transgender community may have resulted in dissatisfactory services being provided. Most participants in this study perceived that the biases associated with negative stereotypes were persistent and pervasive, which may have resulted in disparate treatment from cisgender community members. The positive social change implications stemming from this study include recommendations to government officials and shelter staff regarding techniques to ensure that shelter services are provided in fair and equitable ways, including the need for additional training related to the unique needs of transgendered populations. Implementing these recommendations may improve shelter conditions for the transgender community and reduce the risks associated with going to evacuation shelters to secure housing during times of disaster.
|
7 |
Hazard Vulnerability in Socio-Economic Context: An Example from EcuadorLane, Lucille Richards 14 March 2003 (has links)
How people pereceive the risks associated with natural hazards contributes to their willingness to take protective action. Such action may be constrained by prevailing socio-economic and place-specific conditions that restrict or inform the choice of protective measures available to the individual. Vulnerability to the impacts of extreme geophysical events increases when the range of alternatives is limited or misinformed.
Many evacuees from a potentially violent volcanic eruption in Ecuador returned to their home town of Banos while it was still under an evacuation order in 2000 and considered to be a high risk area by officials. The research examined four main questions: (1) What economic conditions confronted Baños evacuees? (2) What political or other social events occurred while they were evacuated that limited their perceived range of options? (3) What information was available about prior eruptions of the volcano and other local natural hazards? and (4) What were the characteristics of the economic base of Baños? These questions were investigated using data from interviews with evacuees, government and non-governmental officials, census and other statistical information, scholarly texts and newspaper reports.
The research suggests that economic conditions made it extremely difficult for people to relocate to other communities. When a violent eruption did not occur immediately, and few direct impacts of the eruptions were experienced in Baños, many people chose to return home in an effort to reestablish themselves economically. These people perceived the volcano hazard in Baños to be far less threatening than the economic destitution associated with evacuation. This perception may have been influenced by factors other than the socio-economic context, including efforts of political leaders and tourist business owners to effect the town's economic recovery. These efforts included an aggressive publicity campaign that minimized the risk posed by the volcano. Besides encouraging tourists to return, the campaign also encouraged evacuees to do so. Finally, among some residents, religious beliefs may have contributed to perceptions that they would not be harmed in the event of an explosive eruption.
|
8 |
Gångavstånd till utrymningsvägar : En studie om gångstånden till utrymningsvägar och dess dimensioneringsmöjligheter med hjälp av förenklad dimensionering / Distances to evacuation routes : A study of walking distances to escape routes and its design possibilities using simplified dimensioningUllström, Stefan January 2015 (has links)
ABSTRACT The title of this degree project after three years long education of construction engineering is “Distances to evacuation routes” with the subtitle “A study of walking distances to escape routes and its design possibilities using simplified dimensioning”. The idea for the project came from the company Fire AB in Västerås. They are oriented in fire protection dimensioning. When specifying the fire protection for a building you can choose from two different methods, simplified dimensioning or analytical dimensioning. The simplified dimensioning is an easier way of designing the fire protection, you just follow the rules in BBR given by the swedish national board of housing, bulding and planning. Analytical dimensioning is a more complicated method which places higher demands on the user. In some cases analytical dimensioning is a demand. There has been a problem with the simplified method when you dimension the distance to an emergency exit. The maximum distance to an escape route is given in BBR 19/20 and can’t be exceeded at any time. If you have a distance of 31 meters and the acceptable distance is 30 m you would have to solve it with analytical dimensioning, but if you have a normal ceiling height this is very difficult because the calculation values are very high compared to the values used in simplified dimensioning. The only way to get that extra meter accepted is to install some kind of fire alarm which increases the cost of the building. Before BBR 19/20 you could do a report with a risk analysis of that extra meter. That extra meter is often a corner in a room and doesn’t affect the evacuation. When you calculate that extra meter it will affect the evacuation time considerably but in reality it doesn’t make any major difference. It’s not reasonable to install a fire alarm that increases the cost of the building with an extra hundred thousand SEK. The question that will be answered is: How has the maximum walking distance to escape routes changed over time in the different regulations? The requirements for walking distances to escape routes being used today, how where these created and have they been tested in any way? How do they do in Norway, Finland and New Zealand when they decide the maximum distance to an escape route? What do the calculations say? Would a longer distance to an escape route or a higher ceiling height be better for the people that evacuate? There are differences in the maximum distance to an escape route between the countries that has been compared in this essay. In some cases has Norway and Finland has a longer distance than Sweden but overall they are very simlilar. New Zeeland is the country with the longest walking distance in all scenarios. In some cases New Zeeland has the double amount of meters than Sweeden to an escape route. The capter about walking distances to an escape route in the swedish ordinance “Boverkets byggregler” has looked almost the same since 1975. It is time for that chapter to be revised after todays building techniques and materials. Keywords: distance, evacuations, routes, fire, dimensioning, housing, building and planning. / SAMMANFATTNING När en byggnad konstrueras är utrymningssäkerheten för byggnaden väldigt viktig. En del inom utrymningssäkerhet är gångavstånden till utrymningsvägar. Det maximalt tillåtna gångavståndet till utrymningsvägarna bestäms med hjälp av tabellvärden genom förenklad dimensionering eller genom att beräkna tiden till kritiska förhållanden och därefter beräkna maximala gångavstånd detta kallas analytisk dimensionering. Det förstnämnda har behandlats i detta arbete. Med hjälp utav förenklad dimensionering bestäms det maximala gångavstånden till utrymningsvägar efter vilken typ av verksamhet samt dess förutsättningar som råder i det tänkta utrymmet. Max tillåtna gångavstånd varierar från 15 m upp till 60 m beroende på verksamhetsklass och förutsättningar. Syftet med detta arbete är att utreda metoden för att ta fram de längsta gångavstånden samt hur relevant denna är i dagsläget, ytterligare ett syfte är att jämföra denna metod mot Norge, Finland och Nya Zeelands metod för att bestämma längsta gångavstånd. Arbetet består av en litteraturstudie som är baserad på lagtext från de olika länderna. Intervjuer har gjorts med människor som jobbar inom det berörda området i de olika länderna. En teoretisk del presenteras i slutet på arbetet i form av beräkningar, där användes datorsimuleringsprogrammet CFast. Från och med 1947 fram tills idag så har det funnits 4 olika regelverk för byggande i Sverige som alla behandlat gångavståndskraven till utrymningsvägar. Dessa regelverk är Byggnadsstyrelsens anvisningar till byggnadsstadgan (BABS) 1947-1967, Svensk byggnorm (SBN) 1968-1989, Boverkets nybyggnadsregler (NR) 1989-1994 och Boverkets byggregler (BBR)1994-. I BABS var kraven näst intill obefintliga, det kom krav om gångavstånd till utrymningsvägar för bostäder 1960 men nämndes ytterst kort. Till BABS 1960 kom de första kraven som var indelade efter verksamhetsklasser och förutsättningar, det hade dock inget krav för verksamheter där det förelåg en hög risk för bränder. I SBN 1975 infördes gångavståndskraven som används än idag med den enda skillnaden att brandbelastningen för 60 meters gångavstånd är 250MJ/m2 golvarea istället för 40 MJ/m2 omslutande area. I NR användes också denna tabell för att bestämma det maximala gångavståndet till utrymningsvägar. När BBR 1 kom gick man över från detaljkrav till funktionskrav, detta gjordes för att främja alternativa lösningar och teknisk utveckling. Gångavståndskraven flyttades från BBR till rapporten 1994:10 Utrymningsdimensionering sedan Utrymningsdimensionering 2004 och sist till Utrymningsdimensionering 2006 innan de togs tillbaka in till BBR 19. Det var alltså till BBR 19 som kraven återinfördes i BBR. Anledningen till detta var att det skulle bli enklare för användaren. Målet med BBR 19 var att öka verifiering utav brandskyddet i byggnaderna. Det rådde tidigare stor variation utav säkerhetsnivån då Boverket inte reglerat detta tillräckligt. Konkurrens mellan företagen kunde uppstå då företagen kunde tolka reglerna olika. En följd utav detta blev att det blev svårare för branschen att kunna göra alternativa lösningar, t.ex. längre gångavstånd då det i BBR 19 var tydligare gränser för vad som var acceptabelt och inte. Detta ledde till irritation inom vissa delar utav branschen då utrymmet för diskussion med kommunerna kring ett för långt gångavstånd blev mindre. I BBR 20 är kraven desamma som i BBR 19 och snart kommer även BBR 21 att släppas och även där är kravnivån densamma. I våra grannländer Finland och Norge används ett liknande system. I Finland använder man inte verksamhetsklasser utan skriver ut exempel på byggnader och vad de har för maximalt gångavstånd. Finland är medlem i EU och det kan därför tyckas att kraven för gångavstånd till utrymningsvägar borde överensstämma med Sverige men så är inte fallet. Det finns inget krav på att byggreglerna ska vara enhetliga inom EU även om det skulle underlätta arbeten utom landets gränser. Gångavstånden är t.ex. längre för samlingslokaler men kortare för industrilokaler. Detta beror på att de två länderna ser olika på olika typer utav risker. Norge delar in sina utrymmen i olika riskklasser där varje riskklass har ett maximalt gångavstånd till utrymningsvägar. Norge är inte medlem i EU och kraven för maximala gångavstånd är hårdare än Sveriges. Norges krav för bostäder är 30 m jämfört med Sveriges 45 m och Norges krav för industrier är 50 m mot Sveriges 60 m. Det sista landet som utreddes i detta arbete är Nya Zeeland. Regelverket i Nya Zeeland skiljer sig mycket mot de övriga. Regelverket delas in i två grenar, verification methods (VM) och acceptable solutions (AS). VM är en analytisk dimensionerings metod där brandskyddet dimensioneras genom att personen som dimensionerar brandskyddet går igenom 10 olika scenarion, när dessa har gåtts igenom och målen har uppfyllts ska byggnaden vara godkänd. AS är förenklad dimensionering, den delas in i AS 1-7, där varje nummer är en byggnadstyp. Gångavstånden skiljer sig kraftigt mot de Svenska då de är mycket längre. I Nya Zeeland kan byggherren välja vilka nivå på brandskyddet ett visst utrymme ska ha och får därefter olika långa gångavstånd. Grundkraven är generellt sett högre än de svenska och används den högsta klassen på brandskydd, t.ex. automatiskt brandlarm och sprinklers med rökdetektorer så är gångavstånden i vissa fall dubbelt så långa som de svenska. Sista delen i arbetet är beräkningar över gångavstånd och takhöjd kontra tid till kritisk nivå. Kritisk nivå kan uppstå på olika sätt i ett rum, t.ex. att brandgaslagrets höjd kommer till en viss nivå, att toxiciteten är för hög eller att värmestrålningen är för stark. Beräkningsexempel utfördes på två olika lokaler med olika gångavstånd, 30 och 45 m. Takhöjden höjdes sedan med en tredjedel i de båda lokalerna och tiden till kritisk nivå jämfördes sedan. Beräkningsexempel avslöjar att takhöjden och gångavstånden (byggnadens storlek) har stor inverkan på tiden till kritisk nivå. När takhöjden höjs eller gångavståndet förlängs så ökar lokalens volym och därmed får röken en större yta att sprida ut sig på. I förenklad dimensionering tar man inte hänsyn till takhöjden och blir ett gångavstånd för långt måste analytisk dimensionering användas. Beräkningarna visar just att en större byggnad som har ett längre gångavstånd eller en högre takhöjd är gynnsamt då tiden för en säker utrymning ökar. Det vore kanske lämpligt att införa en paragraf i förenklad dimensionering att alla utrymmen som har en viss takhöjd eller en takhöjd över standard kan tillgodogöra sig en tredjedels längre gångavstånd precis som man får göra om en sprinklerinstallation görs. Den specifika takhöjdsgränsen bör tas fram genom riktiga försök samt beräkningar. Detta är en av arbetets slutsatser. Nyckelord: gångavstånd, utrymning, branddimensionering, Boverket.
|
9 |
Vehicle Routing for Emergency EvacuationsPereira, Victor Caon 22 November 2013 (has links)
This dissertation introduces and analyzes the Bus Evacuation Problem (BEP), a unique Vehicle Routing Problem motivated both by its humanitarian significance and by the routing and scheduling challenges of planning transit-based, regional evacuations. First, a variant where evacuees arrive at constant, location-specific rates is introduced. In this problem, a fleet of capacitated buses must transport all evacuees to a depot/shelter such that the last scheduled pick-up and the end of the evacuee arrival process occurs at a location-specific time. The problem seeks to minimize their accumulated waiting time, restricts the number of pick-ups on each location, and exploits efficiencies from service choice and from allowing buses to unload evacuees at the depot multiple times. It is shown that, depending on the problem instance, increasing the maximum number of pick-ups allowed may reduce both the fleet size requirement and the evacuee waiting time, and that, past a certain threshold, there exist a range of values that guarantees an efficient usage of the available fleet and equitable reductions in waiting time across pick-up locations. Second, an extension of the Ritter (1967) Relaxation Algorithm, which explores the inherent structure of problems with complicating variables and constraints, such as the aforementioned BEP variant, is presented. The modified algorithm allows problems with linear, integer, or mixed-integer subproblems and with linear or quadratic objective functions to be solved to optimality. Empirical studies demonstrate the algorithm viability to solve large optimization problems. Finally, a two-stage stochastic formulation for the BEP is presented. Such variant assumes that all evacuees are at the pick-up locations at the onset of the evacuation, that the set of possible demands is provided, and, more importantly, that the actual demands become known once buses visit the pick-up locations for the first time. The effect of exploratory visits (sampling) and symmetry is explored, and the resulting insights used to develop an improved formulation for the problem. An iterative (dynamic) solution algorithm is proposed. / Ph. D.
|
10 |
Modeling geospatial events during flood disasters for response decision-makingHubbard, Shane A. 01 December 2013 (has links)
A model that emphasizes possible alternative sequences of events that occur over time is presented in paper 1 (chapter 2) of this dissertation. Representing alternative or branching events captures additional semantics unrealized by linear or non-branching approaches. Two basic elements of branching, divergence and convergence are discussed. From these elements, many complex branching models can be built capturing a perspective of events that take place in the future or have occurred in the past. This produces likely sequences of events that a user may compare and analyze using spatial or temporal criteria. The branching events model is especially useful for spatiotemporal decision support systems, as decision-makers are able to identify alternative locations and times of events and, depending on the context, also identify regions of multiple possible events. Based on the formal model, a conceptual framework for a branching events model for flood disasters is presented. The framework has five parts, an event handler, a query engine, data assimilator, web interface, and event database. A branching events viewer application is presented illustrating a case study based on a flood response scenario.
A spatiotemporal framework for building evacuation events is developed to forecast building content evacuation events and building vulnerabilities and is presented in paper 2 (chapter 3) of this dissertation. This work investigates the spatiotemporal properties required to trigger building evacuation events in the floodplain during a flood disaster. The spatial properties for building risks are based on topography, flood inundation, building location, building elevation, and road access to determine five categories of vulnerability, vulnerable basement, flooded basement, vulnerable first-floor, flooded first-floor, and road access. The amount of time needed to evacuate each building is determined by the number of vulnerable floors, the number of movers, the mover rate, and the weight of the contents to be moved. Based upon these properties, six possible evacuation profiles are created. Using this framework, a model designed to track the spatiotemporal patterns of building evacuation events is presented. The model is based upon flood forecast predictions that are linked with building properties to create a model that captures the spatiotemporal ordering of building vulnerabilities and building content evacuation events. Applicable to different communities at risk from flooding, the evacuation model is applied a historical flood for a university campus, demonstrating how the defined elements are used to derive a pattern of vulnerability and evacuation for a campus threatened by severe flooding.
Paper 3 (Chapter 4) of this dissertation presents a modeling approach for representing event-based response risk. Surveys were sent to emergency managers in six states to determine the priorities of decision makers during the response phase of flood disasters. Based on these surveys, nine response events were determined to be the most important during a flood response, flooded roads, bridges closed, residential evacuations, residential flooding, commercial flooding, agricultural damage, power outage, sheltering, sandbagging. Survey participants were asked to complete pairwise comparisons of these nine events. An analytic hierarchy process analysis was completed to weight the response events for each decision-maker. A k-means clustering analysis was then completed to form 4 distinct profiles, mixed rural and urban, rural, urban, and high population - low population density. The average weights from each profile were calculated. The weights for each profile were then assigned to geospatial layers that identify the locations of these events. These layers are combined to form a map representing the event-based response risk for an area. The maps are then compared against the response events that actually occurred during a flood disaster in June 2008 in two communities.
|
Page generated in 0.1062 seconds