• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 5
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 18
  • 14
  • 11
  • 9
  • 9
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tertiary magmatism in northern Sardinia

Rutter, Michael John January 1985 (has links)
No description available.
2

Volcanic rocks and their minor intrusives, eastern Jersey, Channel Islands

Thomas, George Matthew January 1977 (has links)
Volcanic rocks which outcrop over 40 sq. km in eastern Jersey and which have a maximum thickness of 25 km have been mapped in detail. Basaltic and andesitic lavas, tuffs and agglomerates, which have been affected by keratophyric alteration, are overlain by numerous ignimbrite cooling units, the youngest of which are generally aphyric, the oldest being porphyritic. Local rhyolites, tuf'fs and andesites occur among the igniinbrites. The volcanics are essentially conformable upon Brioverian sediments and are regarded as being late Precambrian in age. Cadomian E-W and N-B fold phases, with associated faulting, are largely responsible for the present outcrop pattern. The petrology and geochemistry of these volcanics have been studied. Together with the regional distribution of similar late Precambrian volcanism they indicate that the caic-alkaline suite was generated soon after the initiation of the global tectonic movements which eventually produced the Caledonides. The basalts and andesites are thought to result from the partial melting of a descending lithospheric plate within the mantle, the magmas thus produced being modified en route to the surface by fractionation and crustal contamination under a variable The rhyolitic maginas were produced by crustal anatexis and collected in high-level magma chambers prior to their eruption. Post.-orogenic Cadomian plutonics which invade the volcanics are also caic-alkaline but are chemically distinct from the extrusives. The petrology and geochemistry of a dyke swarm which invades the volcanics and just postdates emplacement of the plutonics is also discussed. This appears genetically related to the plutonic complexes and was generated close to the base of the crust.
3

Magma genesis in the northern Lau Basin, S.W. Pacific

Acland, A. Sarah January 1996 (has links)
The northern Lau Basin contains the northeastern-most part of the Tonga arc-basin system. Volcanic rocks associated with the recent-arc have been sampled from Tafahi and Niuatoputapu, and young basalts «1.5Ma) have been dredged from Northern Lau Spreading Centre (NLSC), the northeastern limb of the King's Triple Junction. The 1982 'Kallisto' cruise dredged two ophiolite sections, one containing boninitic, and the other tholeiitic, lavas, from the inner wall of the northern Tonga trench. The magma genesis of these lava suites is related to the structural and geochemical controls imposed during the tectonic evolution of the region. The geochemical controls result from processes related to the mantle dynamics in the northern Lau Basin, and to along-trench variations and the degree of influence of the subduction component. The lavas associated with the Central Lau Spreading Centre are derived from the Lau Basin mantle reservoir, which has Indian MORB mantle (!MM) isotopic characteristics. This reservoir has been present under the region since early-arc magmatism, as indicated by the trace elements and !MM isotopic signatures of the tholeiitic lavas from the eastern ophiolite section, and Eocene lavas from 'Eua. A reservoir with the geochemical characteristics of residual Samoan plume mantle underlies the northern Lau Basin. This mantle has been influxing through the rip in the Pacific plate, at the northern termination of the Tonga trench, since the Lau Basin began to open « 6Ma), as a result of processes relating to subduction roll-back. The north Tongan boninites, the lavas from Tafahi and Niuatoputapu have residual plume mantle sources. However, prior to the opening of the Lau Basin, the proto-Tonga trench formed a barrier to this influx, and therefore, the influence of the plume cannot be detected in lavas associated with the early-arc, such as the tholeiites from one of the ophiolite sections and the Eocene lavas from 'Bua. The variations in the trace element and Pb isotopic compositions of the lavas from the Northern Lau Spreading Centre indicate that mixing has occurred between Lau Basin and residual plume mantle end-members in the central northern Lau Basin. The residual plume mantle sources of the north Tongan boninites and the lavas from Tafahi, Niuatoputapu and the Tofua arc have been enriched by a subduction component, the characteristics of which are enrichment in Lll..E, Ph ± LREE. In the south, the subduction component is made up of fluids derived from subducted Pacific altered oceanic crust and pelagic sediments. However, in the north, it is comprised predominantly of fluids derived from Pacific volcanogenic sediments, with a contribution from altered oceanic crust and possibly subducted plume crust.
4

Petrology and Mineralogy of Tertiary(?) Volcanic Rocks West and Southwest of Kelton (Box Elder Co.), Utah

Voit, R. L. 01 May 1985 (has links)
The Kelton, Utah, area has numerous, isolated basaltic outcrops of probable Tertiary age mostly in the form of cuestas with steep faces displaying columnar joints. One ash-flow tuff is located in the southeastern part of the study area. Basaltic fragments in the tuff indicate that pyroclastic activity was preceded by extrusion of basalt. Effects of Lake Bonneville on the basaltic outcrops include wave­cut terraces, scarps, and other wave-built forms in low lying areas. Massive carbonate deposits formed at levels of former shorelines of Lake Bonneville. Tertiary and Quaternary deposits cover the low- lying areas between basaltic flows, and consist of materials primarily derived from the Raft River Mountains to the northwest. The study area lies in a transitional zone between the Great Basin and the Snake River Plain to the north where the crustal thickness increases from 25 to 30 km. The basaltic lavas range from aphanitic to hypocrystalline with su bophitic, intergranular, and pilotaxitic textures. Glass shards, axiolites, and pumice fragments are present in the ash-flow tuffs. Petrographic, mineralogic, and chemical studies were completed on selected samples of both basaltic and pyroclastic rocks to determine genetic relationships. Tholeiitic basalt, BV81-24, is distinguished from other basalts in the area by the presence of three pyroxenes in the groundmass and distinctive chemistry: high Si02, Al203, and Mg0; and low Ti02 and total iron. The remaining basaltic rocks may be related to a common parent, BV81-11, by a process of crystal fractionation. The parental magma, in turn, may be derived by partial melting of a hypothetical mantle material, such as pyrolite or garnet peridotite. The intrusion of basaltic magma into the crust is thought to cause partial melting of crustal material, generating magma of rhyolitic composition. Violent extrusion of rhyolitic magma has produced ash-flow tuffs, represented by BV81-17 and BV81-18. Thus these basalts and ash­flow tuffs are considered to be members of a bimodal suite as is common in the Basin and Range Province.
5

Geology of the late precambrian Flat River complex and associated volcanic rocks near Durham, North Carolina

McConnell, Keith I. 06 February 2013 (has links)
Disotopic dating of zircons from the Flat River Complex in the Carolina "slate" belt north of Durham, N.C. shows this intrusive complex to be 650 ± m.y. old. Modal analyses of granophyric groundmass compared to experimental data, the presence of vent breccias and related pyroclastic deposits, and consideration of age relations between the intrusive and extrusive rocks indicate that the Flat River was emplaced at very shallow levels (< l km) and acted as the source for most of the volcanic material surrounding the complex. The age determined for the Flat River Complex indicates that deposition of the volcanic rocks began prior to 650 m.y. ago and extends the slate belt volcanicity interval to 130 m.y. (520 to 650 m.y. b.p.) Both subareal and marine depositional environments are represented in the stratigraphic sequence. / Master of Science
6

Structure and Petrology of Tertiary Volcanic Rocks Near Etna, Utah

Smith, Kent W. 01 May 1980 (has links)
Three volcanic domes and related volcanic rocks of Tertiary age are located near Etna, Utah, in Box Elder County. The domes follow a north-south trend and are fault controlled. Flow structure indicates a change from a less viscous, flow-forming lava which produced an exogenous dome to a more viscous lava which formed endogenous domes. Associated pyroclastic deposits are negligible. The volcanic rocks are composed of porphyritic rhyolite and rhyolitic vitrophyre having phenocrysts of quartz, sanidine, plagioclase and biotite with minor amounts of Fe-Ti oxides, hypersthene, allanite and calcic amphibole. Quartz and sanidine phenocrysts are generally embayed whereas plagioclase phenocrysts are euhedral and extensively zoned. Average whole-rock chemical analyses yield: SiO2, 77.13; TiO2, 0.12; Al2O3, 11.01; Fe2O3, 0.9; FeO, 0.35; MnO, 0.02; MgO, 0.19; CaO, 0.82; Na2O, 2.93; K2O, 4.99; P2O5, 0.03; H2O+, 1.17; H2O-, 0.22; total, 99.94 weight percent. Coexisting Fe-Ti oxide microphenocrysts yield equilibration temperatures ranging from 872° to 684°C while respective log f0 2 values range from -13.5 to -19.5. These temperatures are comparable to temperatures obtained using the plagioclase-glass geothermometer at a water pressure of 1 kb. Mineral buffer reactions yield water fugacities with corresponding water pressures up to 4.9 kb. Assuming water pressure equals total pressure, calculated depths of approximately 18 km are obtained indicating an origin within the crust. High silica values and high alkali to calcium ratios indicate that ix the lavas are chemically similar to bimodal rhyolite-basalt assemblages located in other areas of the western United States. Small outcrops of basalt, located west of the Etna area, also suggest a bimodal assemblage. Viscosity values (log n) for the south dome range from 7.05 to 10.35 suggesting that there was a change from a less viscous to a more viscous lava. Comparisons between hydrous and dry calculations indicate that falling water content as well as decreasing temperature were responsible for the change in viscosity and resulting structural changes.
7

A geophysical definition of a Klamath Falls graben fault

Veen, Cynthis Ann 01 January 1979 (has links)
Four geophysical methods, along with well logs and outcrop data, were used in determining the location of a fault situated on the campus of Oregon Institute of Technology, just north of Klamath Falls, Oregon. The fault displaces rocks of the Yonna Formation, of Pliocene age. Wells located northeast of the fault (on the upthrown side) produce cold water, and wells located southwest of the fault (on the downthrown side) produce hot water. The purpose of this investigation was to define the characteristics of the fault exposed behind a large water tank southeast of the OIT campus.
8

Geology of the southcentral margin of the Tillamook Highlands; southwest quarter of the Enright Quadrangle, Tillamook County, Oregon

Cameron, Kenneth Allan 01 January 1980 (has links)
The Tillamook Highlands is a largely unmapped volcanic pile located in the north end of the Coast Range of Oregon. The 36 square miles of T. 1 N., R. 8 W., on the southcentral margin of the Highlands, was chosen for detailed study. The study area is composed of Eocene age sedimentary and volcanic units which were deposited in a filling basin. The lowest units were deposited in moderate to deep marine waters; the uppermost were deposited subaerially.
9

Busca de oligoelementos em rochas vulcânicas / Search of Oligoelements in Volcanic Stones

Guillaumon, Pedro Vinícius 25 August 2014 (has links)
Foram realizadas medidas de espectroscopia gama simples, de espectroscopia gama-gama em anti-coincidência e coincidência em dezessete amostras de rochas vulcânicas irradiadas com nêutrons térmicos. Foram determinadas, utilizando cálculo covariante, 33 elementos químicos (Al, As, Ba, Ca, Ce, Cl, Co, Cr, Cs, Dy, Eu, Fe, Hf, K, La, Lu, Mg, Mn, Na, Nd, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, Yb, Zn e Zr), dos quais 21 elementos traço. Foi determinado o limite máximo de detecção para o irídio em 11 amostras. Foi obtido um valor máximo de 0,7 ppb. Os resultados foram comparados com o processo astrofísico de formação da Terra. A concentração de urânio e tório variou entre 3 ppm e 9 ppm, com exceção das amostras de Kilimanjaro, que variou entre 40 ppm e 45 ppm. Abaixo da concentração de 12 ppm presentes na crosta terrestre. Espera-se concentrações menores devido a estimativas de tório e urânio através do calor emitido pela Terra. Foram determinados 10/17 lantanídeos, com destaque para a abundância de Ce em Kilimanjaro, cujos valores obtidos foram de 272 (6) ppm e 319 (11) ppm. / Single gamma ray spectroscopy, gama-gama coincidence and anticoincidence spectroscopy have been performed to study 17 volcanic rocks irradiated with neutrons. We have determined, using covariant calculations, 33 chemical elements including 21 trace elements: Al, As, Ba, Ca, Ce, Cl, Co, Cr, Cs, Dy, Eu, Fe, Hf, K, La, Lu, Mg, Mn, Na, Nd, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, Yb, Zn e Zr. We set a maximum limit of detection for iridium in 11 samples. We have determined a maximum value of 0,7 ppb. The results were associated to the astrophysical process that led to the Earth formation. Thorium and uranium abundance ranged between 3 ppm e 9 ppm, except for the samples of Kilimanjaro, which ranged from 40 ppm to 45 ppm. Less than 12 ppm, the Earth\'s Crust abundance of thorium and uranium. Using the heat emitted by Earth to estimate the abundance of them led to significant lower values. We have also determined 10/17 lanthanides, like Ce that has an abundance of 272 (6) ppm and 319 (11) ppm, in the case of Kilimanjaro\'s samples.
10

O vulcanismo ácido da Província Magmática Paraná-Etendeka na região de Gramado Xavier, RS: estratigrafia, estruturas, petrogênese e modelo eruptivo / The silicic volcanism in Paraná Etendeka Magmatic Province, Gramado Xavier, RS: volcanic stratigraphy, structures, petrogenesis and eruptive models

Polo, Liza Angelica 05 June 2014 (has links)
O mapeamento detalhado de uma área de ocorrência de rochas vulcânicas na borda sul da Provincia Magmática Paraná Etendeka (PMPE), entre as cidades de Gramado Xavier e Barros Cassal, RS, permitiu estabelecer a relação estratigráfica de três sequências vulcânicas ácidas geradas por eventos eruptivos associados a magmas-tipo quimicamente distintos. A sequência Caxias do Sul corresponde à primeira manifestação de vulcanismo ácido e é formada por diversos fluxos de lava e lava-domos, emitidos de forma continua, sem intervalos significativos entre as erupções, o que resultou em um espesso pacote de até 140 m de espessura. O final do magmatismo se deu de forma intermitente, com a deposição de arenito entre os últimos derrames. Estas rochas têm composição dacítica (68-70% SiO2) e textura inequigranular hipohialina afanítica a fanerítica fina, sendo compostas por microfenocristais (<2,3 mm) e micrólitos de plagioclásio (\'An IND.55-67\"), piroxênios (hiperstênio, pigeonita e augita) e Ti-magnetita imersos em matriz vítrea ou desvitrificada. Modelos de fracionamento sugerem que seu magma parental pode ter evoluído a partir de um líquido fracionado de basaltos tipo Gramado. As assinaturas geoquímicas e isotópicas (\'ANTPOT.87 Sr\'/\'ANTPOT.86 \'Sr\'IND.(i)\' 0,7192-0,7202) indicam que a evolução pode ter ocorrido em um sistema fechado, com participação, ao menos localmente, de um contaminante crustal mais oxidado. Estima-se que, previamente à erupção, apresentavam temperaturas próximas ao liquidus, de 980-1000ºC, 2% de H2O, fO2 \'10 POT.10,4\' bar, e devem ter residido em reservatórios localizados na crosta superior, a P~3 kbar. Um evento de recarga na câmara pode ter disparado o início da ascensão, que ocorreu com um gradiente dP/dT de 100bar/ºC e velocidades de 0,2 a 0,5 cm \'s POT.-1\' , propiciando a nucleação e crescimento de feno e microfenocristais. O magma teria alcançado a superfície a temperaturas de ~970ºC e viscosidades de \'10 POT.4\' a \'10 POT .5\' Pa.s. A segunda sequência vulcânica, aqui denominada Barros Cassal, é composta por diversos fluxos de lavas andesito basálticas, andesíticas e dacíticas (54-56; 57-58 e 64-66% SiO2, respectivamente), com frequentes intercalações de arenito, que atestam o comportamento intermitente deste evento. Estas rochas apresentam uma textura hipohialina a hipocristalina afanítica a fanerítica fina, cor preta a cinza escura e proporções variadas de vesículas e amígdalas. Todas são compostas por microfenocristais (<0,75 mm) de plagioclásio, augita e Ti-magnetita subédricos, anédricos ou esqueléticos, imersos em matriz vítrea ou desvitrificada. As assinaturas isotópicas das rochas que compõem esta sequência (e.g., \'ANTPOT.87 Sr\'/\'ANTPOT.86 \'Sr\' IND.(i)\' = 0,7125-0,7132) encontram-se dentro do campo dos basaltos toleíticos tipo Gramado, que pode ter sido o magma parental a partir do qual derivaram por cristalização fracionada. Estimativas baseadas nas condições de equilíbrio cristal-líquido indicam que os magmas mais evoluídos da sequência Barros Cassal, de composição dacítica, apresentavam temperaturas de 990 a 1010 ºC, 1,4 a 1,8% de H2O e viscosidades de \'10 POT.4\' Pa.s. As pequenas dimensões dos cristais e cálculos barométricos indicam que a cristalização se deu durante a ascensão, entre 2 e 3 km de profundidade (0,5 a 0,7 kbar de pressão), enquanto o magma ascendia a uma velocidade de 0,12 cm \'s POT.-1\' . Com o fim deste evento vulcânico, desenvolveu-se regionalmente uma expressiva sedimentação imatura (espessura >10 m) de arenitos arcosianos e conglomerados. O último evento vulcânico corresponde à sequência Santa Maria, composta por fluxos de lava e formação de lava domos de composição riolítica (70-73% SiO2), que atingiram espessuras totais de 150 a 400 m. Na base ocorrem feições de interação lava-sedimento (peperitos) e autobrechas (formadas na base e carapaça dos derrames, que constituem lobos nas porções mais distais). Obsidianas bandadas e outras feições indicativas de fluxo coerente são características da unidade. No centro da pilha, a sequência de riolitos constitui uma camada mais monótona de rochas dominantemente cristalinas com marcante disjunção vertical que correspondem à parte central de corpos de lava-domos, no topo predominam as disjunções horizontais. Estas rochas contém < 6% de fenocristais e microfenocristais (<1,2 mm) de plagioclásio (An40-60), Ti- magnetita e pigeonita imersos em matriz vítrea ou cristalina (maciça ou bandada) com até 20% de micrólitos. Modelos de fracionamento são consistentes com modelos em que o magma parental do riolito Santa Maria teria composição similar ao dacito Barros Cassal. As variações nas razões \'ANTPOT.87 Sr\'/\'ANTPOT.86 \'Sr\'ind.(i)\' (0,7230-0,7255) sugerem evolução em sistema aberto, envolvendo contaminação crustal. O magma teria evoluído em câmaras magmáticas localizadas a <12 km de profundidade (<3 kbar), a temperaturas entre 970 e 1000ºC, com fO 2 de ~\'10 POT.10-11\' bar e até 1% de H2O. A cristalização, que se iniciou dentro do reservatório, teria prosseguido durante a ascensão, que ocorreu em gradientes dP/dT de 100 bar/ºC e velocidades médias de 0,2 cm \'s POT.-1\' . O processo de nucleação de micrólitos ocorreu quando o magma ultrapassou o limite de solubilidade a 200 bar de pressão, apresentando temperaturas de 940-950ºC e viscosidades de \'10 POT.5\' a \'10 POT.7\' Pa.s. A alimentação por condutos fissurais, associada a altas taxas de extrusão, teriam elevado a tensão cisalhante próximo às paredes do conduto, gerando bandamentos com distintas concentrações de água. As bandas hidratadas funcionaram como superfícies de escorregamento, diminuindo a viscosidade efetiva, favorecendo a desgaseificação e aumentando a eficiência do transporte do magma desidratado até a superfície. A identificação de estruturas associadas à efusão de lavas, como dobras de fluxo, fluxos lobados, auto-brechas, além da identificação de estruturas de lava domos, contraria interpretações que propõem origem dominantemente piroclástica para o vulcanismo ácido na região, a partir de centros efusivos localizados em Etendeka, na África. / The detailed mapping of an area in the southern edge of the Paraná Etendeka Magmatic Province (PEMP), between the cities of Gramado Xavier and Barros Cassal, Rio Grande do Sul, Brazil, revealed three stratigraphic sequences generated by silicic volcanic eruptions associated to chemically distinct magma-types. The Caxias do Sul sequence corresponds to the first volcanic manifestation of silicic magmatism in the PMPE. It consists of several lava flows and lava domes which erupted continuously, without significant gaps between the events, and resulted in a thick deposit of up to 140 m. The deposition of layers of sandstone between the last lava flows show the intermittent ending of this volcanic event.. These rocks present dacitic composition (~68 wt% SiO2) and hipohyaline to phaneritic texture with microphenocrysts (<2.3 mm) and microlites of plagioclase (\'An IND.55-67\'), pyroxene (hypersthene, pigeonite and augite) and Ti-magnetite surrounded by vitreous or devitrified matrix. The fractionation models suggest that their parental magma may have evolved from a liquid which fractionated from Gramado-type basalts. Geochemical and isotopic signatures ( \'ANTPOT.87 Sr\'/\'ANTPOT.86 \'Sr\' IND.(i)\' 0.7192 to 0.7202) indicate that evolution may have occurred in a closed system, with the participation, at least locally, of a more oxidized crustal contaminant. It is estimated that prior to the eruption the magma might have reached a near-liquidus temperature (980-1000°C), with 2%H2O, fO2 \'10 POT.10.4\' bar, in the reservoirs located in the upper crust, at P~3 kbar. A recharge event in the camera may have triggered the ascension, which occurred with a dP/dT gradient of 100bar/°C and speeds from 0.2 to 0.5 cm.\'s POT.-1\' , leading to nucleation and growth of pheno and microphenocrysts. The magma may have reached the surface at a temperature of ~970 °C and viscosity of \'10 POT.4\' -\'10 POT.5\' Pa.s. The second volcanic sequence, Barros Cassal, is composed of several andesite basaltic, andesitic and dacitic lava flows (54-56, 57-58 and 64-66% SiO2, respectively), with frequent intercalations of sandstone, proving the intermittent behavior of this event. These rocks present aphanitic hipohyaline to hipocrystaline phaneritic texture, black to dark gray color and varied proportions of vesicles. They are all composed of microphenocrysts (<0.75 mm) of plagioclase, augite and subhedral, anhedral or skeletal Ti-magnetite, immersed in glassy or devitrified matrix. The isotopic signatures of the rocks that make up this sequence (eg. \'ANTPOT.87 Sr\'/\'86 ANTPOT. \'Sr IND.(i)\' = 0.7125 to 0.7132) are within the field of tholeiitic Gramado- type basalts, which may have been the parental magma from which they derived by fractional crystallization. Estimates based on the conditions of crystal-liquid equilibrium indicate that the most evolved magmas of the Barros Cassal Sequence, of dacitic composition, reached a temperature of 990-1010°C, 1.4 to 1.8% H2O, and viscosity of \'10 POT.4\' Pa.s. The small size of the crystals and the barometric models indicate that crystallization occurred during the rise, between 2 and 3 km depth (0.5 to 0.7 kbar pressure), while the magma ascended at a speed of 0.12 cm \'s POT.-1\' . With the end of this volcanic event, a significant immature sedimentation (thickness> 10 m) of feldspathic sandstone and conglomerates developed regionally. The last sequence corresponds to Santa Maria, composed of lava flows and lava domes of rhyolitic composition (70-73% SiO2). These deposits can be 150-400 m thick. Features as lava-sediment interaction (peperites) and autobreccias (formed at the base of the flows, which are lobated in the more distal portions) are common in the base of the volcanic pile. banded obsidian and other distinctive features of effusive flows are common in this unit. In the center of the stack, a more monotonous body flow predominates, with hipocrystalline textures and vertical disjunction (corresponding to the central portion of the lava dome). on the top, horizontal disjunctions predominate. These rocks contain <6 % of microphenocrysts and phenocrysts (<1.2 mm) of plagioclase (\'An IND.40-60\'), Ti-magnetite and up to 20% of pigeonite microlites. all these mineral phases occur immersed in glassy or crystalline (massive or banded) matrix. The fractionation models are consistent with models in which the parental magma of the Santa Maria rhyolite and the dacites of Barros Cassal Sequence have similar composition. Variations in \'ANTPOT.87 Sr\'/\'ANTPOT.86\'Sr IND.(i)\' (0.7230 to 0.7255) suggest open-system evolution, involving crustal contamination. The magma might have evolved into dacitic composition in magma chambers located at a depth of <12 km (< 3 kbar), at temperatures between 970 and 1000°C, fO2 of ~\'10 POT.10\'-\'10 POT.11\' bar and 1% of H2O. The crystallization began in the reservoir and might have continued during the ascent, which occurred in dP/dT gradients of 100 bar/°C, with average speeds of 0.2 cm s -1 . The microlites nucleation process occurred when the magma exceeded the solubility limit at 200 bar and displayed a temperature of 940-950°C and viscosity of 10 5 -10 7 Pa.s. The feeding through fissure conduits, associated to high- rate extrusion, might have increased the shear stress near the conduit walls, generating banding with different concentrations of water. Hydrated bands acted as slip surfaces, decreasing the effective viscosity, favoring degassing and increasing the efficiency of transport of dry magma to the surface. The identification of structures associated with lava effusion - like folds of flow, lobed flows, autobreccias, as well as lava dome structures - contradicts the current interpretation, which proposes one single pyroclastic origin, eruptive centers located in Etendeka, Africa, for all deposits of silicic composition in the PEMP.

Page generated in 0.0602 seconds