• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 110
  • 29
  • 18
  • 17
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 229
  • 86
  • 44
  • 30
  • 23
  • 18
  • 18
  • 16
  • 15
  • 15
  • 15
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Late Cenozoic volcanism in the San Francisco volcanic field and adjacent areas in north central Arizona

Sabels, Bruno Erich, 1929- January 1960 (has links)
No description available.
142

Metamorphosed volcanogenic Pb-Zn deposits at Montauban, Quebec

Stamatelopoulou-Seymour, Karen. January 1975 (has links)
No description available.
143

Tracing Biogeochemical Processes Using Sulfur Stable Isotopes: Two Novel Applications

Cousineau, Mélanie L. 23 January 2013 (has links)
Abstract Dissimilatory microbial sulfate reduction (MSR) The specific objectives of the study were to provide the first measurements of sulfur isotope fractionation associated with acidophilic sulfate reducing-microorganisms, and to examine whether pH influences sulfur fractionation during MSR. The fractionation associated with the strains investigated was comparable to that of neutrophilic strains with similar metabolisms (4-12‰), but varied with pH. Two fractionation regimes were identified: one regime is consistent with fractionation during exponential growth, while the other – not identified previously - is not linked to active sulfate reduction and may result from internal sulfate accumulation. This would represent the first measurement of sulfur fractionation during sulfate uptake, the first step of MSR. Geological processes at the Cretaceous-Paleogene (KPg) boundary The KPg boundary is associated with one of the largest biological extinctions in the history of our planet. Two major geologic events - the Chicxulub bolide impact with evaporite terrane and the eruption of the Deccan continental flood basalts - coincide with the KPg boundary and have been identified as possible triggers for the extinctions, but their relative timing remains unresolved. The objectives of this study were to identify the contribution of these processes to the sulfur burden in the sedimentary environment of two freshwater KPg sections, and to determine their relative timing. The results demonstrate that the peak of Deccan volcanism post-dates the Chicxulub impact and the associated abrupt KPg mass extinction, thus precluding a direct volcanic causal mechanism, but shedding light on the underlying causes for the delayed recovery of ecosystems in the early Paleogene.
144

Volatile release and atmospheric effects of basaltic fissure eruptions

Thordarson, Thorvaldur January 1995 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 1995. / Includes bibliographical references (leaves 556-580). / Microfiche. / 2 v. (xv, 580 leaves, bound) ill., maps, col. photos. 29 cm
145

Mt. Morning, Antarctica : geochemistry, geochronology, petrology, volcanology, and oxygen fugacity of the rifted Antarctic lithosphere

Martin, Adam Paul, n/a January 2009 (has links)
Mt. Morning is a 2,732 m high, Cenozoic, alkaline eruptive centre situated in the south-west corner of McMurdo Sound in the Ross Sea, Antarctica. Mt. Morning is approximately 100 km south-west of Mt. Erebus, the world's southernmost active volcano. Several Cenozoic, alkali eruptive centres in this region make up the Erebus Volcanic Province. The region is currently undergoing continental extension. Regional-scale, north-striking faulting on the northern flank of Mt. Morning has offset vertical dykes, as young as 3.9 Ma, by up to 6 m dextrally. This is consistent with the trans-extensional regime in the region. The faults also have a dip-slip component, downthrown to the east. These faults define part of the western boundary of the West Antarctic Rift System. Mt. Morning straddles the boundary between the continental rift shoulder of the Transantarctic Mountains in Southern Victoria Land, and the perceived oceanic crust of the Ross Sea. Age determination of the youngest offset dyke constrains movement in the last 3.88 � 0.05 m.y., to an average rate of 0.0015 mm per year. Volcanism on Mt. Morning is divided into two phases. Phase I was erupted between 18.7 � 0.3 and 114 � 0.2 Ma and Phase II between 6.13 � 0.20 and 0.15 � 0.01 Ma. The two phases are separated by a 5.3 m.y. period of quiescence. The geochemistry of Phase I is mildly alkaline; it is composed of volcaniclastic deposits, dykes, sills, and volcanic plugs of nepheline-basanite, nepheline-trachyte, quartz-mugearite, quartz-trachyte, and rhyolite. Phase I rocks evolved along at least two trends: a quartz normative trend, and a nepheline normative trend. Chemical variation in Phase I can be explained in part by crystal fractionation, which has been modelled using major element multiple linear regression. Phase I quartz-mugearite can fractionate to quartz-trachyte after 44% crystallisation. Quartz-trachyte can fractionate to rhyolite after a further 6% erystallisation. The models indicate that clinopyroxene + plagioclase + opaque oxides � alkali feldspar � apatite are the dominant fractionated phases. Many of the Phase I quartz normative volcanic rocks have relatively high ⁸⁷Sr/⁸⁶Sr ratios (0.70501), suggesting that assimilation, most likely of crustal material, has modified them. Phase I nepheline-basanite can fractionate to nepheline-trachyte after 68% crystallisation. Modelling indicates clinopyroxene + nepheline + olivine + opaque oxides are the dominant fractionated phases. Phase II volcanic rocks are strongly alkaline and are mapped as flows, volcaniclastic deposits, dykes, and sills. They have been erupted mainly from parasitic scoria vents and rarely from fissure vents. Rock types include picrobasalt, basalt, basanite, tephrite, hawaiite, mugearite, phonotephrite, tephriphonolite, benmoreite, and phonolite. Chemical variations in the Phase II volcanic rocks can be explained by simple fractionation. Phase II picrobasalt can fractionate to phonotephrite after 78% crystallisation. Phonotephrite can fractionate to phonolite after at least 35% crystallisation, depending on which of several multiple linear regression models are selected. Fractionation is dominated by the removal of clinopyroxene + plagioclase + nepheline + olivine + opaque oxides � apatite � kaersutite. Volcanic rocks in the Erebus Volcanic Province are strongly alkaline on a silica versus total alkalis plot, similar to the Phase II volcanic rocks from Mt. Morning. Mildly alkaline rocks of Phase I are, to date, unique within the Erebus Volcanic Province. Bulk rock isotope ratios of ⁸⁶Sr/⁸⁷Sr (0.70307 - 0.70371 and 0.70498 - 0.70501), �⁴�Nd/�⁴⁴Nd (0.512650 - 0.512902), and �⁰⁶Pb/�⁰⁴Pb (18.593 -20.039) show that the majority of Mt. Morning volcanic rocks lie on a mixing line between HIMU (high-[mu]; enriched in �⁰⁶Pb and �⁰⁸Pb and relatively depleted in ⁸⁶Sr/⁸⁷Sr values) and DM (depleted mantle; high �⁴�Nd/�⁴⁴Nd, low ⁸⁶Sr/⁸⁷Sr, and low �⁰⁶Pb/�⁰⁴Pb). This is similar to the majority of volcanic rocks from the SW Pacific, including Antarctica and New Zealand. Mt. Morning volcanic rocks have tapped this broadly common mantle reservoir. There are variations in radiogenic isotope ratios between Mt. Morning and Mt. Erebus. There are also differences between the incompatible element ratios in volcanic rocks from Mt. Morning, Mt. Erebus, and White Island (a third eruptive centre in the Erebus Volcanic Province), suggesting heterogeneity in the mantle beneath the Erebus Volcanic Province. Significant chemical differences are also noted between ultramafic xenoliths collected from Mt. Morning and from Foster Crater only 15 km away. This suggests a deca-kilometre, possibly even kilometre-scale, heterogeneity in the mantle. Such small-scale chemical differences appear difficult to reconcile with large-scale plume hypotheses for the initiation of volcanism in the Erebus Volcanic Province. Instead, volcanism is much more likely to be related to numerous small plumes, or the preferred hypothesis, metasomatism and amagmatic rifting, followed by decompression melting of upwelling mantle and volcanism during transtensional lithospheric rifting. This latter model is supported by a lack of regional updoming expected with a plume(s), and fits models of localised extension proposed in this thesis. Calc-alkaline and alkaline igneous xenoliths, of felsic to mafic crustal material, have been collected from Mt. Morning. U-Pb geochronology (545.4 � 3.7 Ma and 518.6 � 4.4 Ma) on crustal xenoliths from Mt. Morning illustrate that the basement is Cambrian. Bulk rock chemistry of crustal xenoliths has similarities to compositions reported for Ross Orogen rocks, suggesting the Mt. Morning volcanic edifice is built on a basement that is composed of Cambrian Ross Orogen rock types. Quartz-bearing felsic granulite xenoliths with greater than 70 weight percent silica, collected from Mt. Morning, suggest that part of the basement is felsic. This is the only occurrence of felsic xenoliths reported to date east of the present day coastline of Victoria Land. Mt. Morning crops out less than 25 km from the known northern end of the Koettlitz Glacier Alkaline Province in the Transantarctic Mountains. The partially alkaline basement beneath Mt. Morning suggests the province may continue beneath part of Mt. Morning. The mantle beneath Mt. Morning can be characterised as anhydrous and otherwise largely unmetasomatised, which is atypical of xenoliths collected from the western Ross Sea. Only a handful of Mt. Morning xenoliths show petrographic evidence of metasomatism, these include modal phlogopite, apatite, Fe-Ni sulphide, and plagioclase (in pyroxenite xenoliths), suggesting metasomatising fluids occur discretely in this region. Where present, the metasomatic fluid(s) beneath Mt. Morning are enriched in Ba, LREEs, Th, U, P, Fe, Ni, S, and K, and depleted in Ti relative to the metasomatic fluid composition described at nearby Foster Crater. Oxygen fugacity (fO₂) of the Antarctic shallow mantle has been measured from xenoliths collected from Mt. Morning, where fO₂ was demonstrated to be strongly dependant upon spinel Fe�⁺ content that was measured using Mössbauer spectroscopy, and calculated from the olivine-orthopyroxene-spinel oxybarometer. fO₂ in the rifted Antarctic mantle varies between 0.1 and -1 log units relative to the fayalite-magnetite-quartz buffer and is coupled to melt depletion, with increasing degrees of melt extraction resulting in a more oxidised mantle. This range of upper mantle fO₂ is commonly observed in continental rift settings worldwide. The mantle beneath Mt. Morning is composed of, in increasing degree of fertility, dunite, harzburgite, and lherzolite. Xenoliths representing discrete samples of this mantle have mostly crystallised in the spinel stability field of the mantle at pressures of approximately 15 kb and temperatures between 950 - 970 �C. Symplectites of spinel and pyroxene have been interpreted as petrographic evidence that some of the spinel peridotite originated in the garnet stability field of the mantle. Rare plagioclase-bearing spinel lherzolite (plagioclase lherzolite) is also present in the mantle beneath Mt. Morning, which crystallised at temperatures of between 885 and 935 �C at 5 kb. The Mt. Morning peridotite xenoliths plot along the pre-defined geotherm for the Erebus Volcanic Province, strongly supporting it as the appropriate choice of geothermal gradient for south-west McMurdo Sound. Mineral and bulk rock compositions are nearly identical between the plagioclase lherzolite xenoliths and spinel lherzolite xenoliths. Mineral and bulk rock chemistry suggest it is unlikely that the plagioclase is due to metasomatism. Petrographic evidence and mass balance calculations suggest that the plagioclase lherzolite has crystallised via a sub-solidus (metamorphic) transition from spinel lherzolite upon decompression and upwelling of the mantle. The occurrence of plagioclase lherzolite beneath Mt. Morning could be explained by lithospheric scale uplift along faults that define the western margin of the West Antarctic Rift System. Plagioclase lherzolite has also been collected and described from White Island. White Island is also interpreted to straddle lithospheric scale faults. Rifting and buoyant uplift is sufficient to explain the presence of plagioclase lherzolite in the Erebus Volcanic Province. Plagioclase lherzolite has also been described from Mt Melbourne, an eruptive centre in Northern Victoria Land. Known occurrences of plagioclase lherzolite from the western shoulder of the Ross Sea now cover an area 430 km long and 80 km wide. This is one of the largest provinces of plagioclase peridotite worldwide so far reported.
146

Snow Peak, OR : late Miocene to early Pliocene volcanism in the central Cascadia forearc /

Hatfield, Ashley K. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 87-95). Also available on the World Wide Web.
147

Stable isotope (¹⁸O/¹⁶O and D/H) studies of cascade volcanic arc magmatism

Underwood, Sandra Jean. January 2009 (has links) (PDF)
Thesis (PhD)--Montana State University--Bozeman, 2009. / Typescript. Chairperson, Graduate Committee: Todd Feeley. Includes bibliographical references.
148

Geology, geochemistry, geochronology and genesis of granitoid clasts in breccia-conglomerates, MacLean extension orebody, Buchans, Newfoundland /

Stewart, Peter William, January 1985 (has links)
Thesis (M.Sc.) -- Memorial University of Newfoundland. / Typescript. Bibliography : leaves 266-289. Also available online.
149

Deep crustal and mantle inputs to North Sister Volcano, Oregon High Cascade Range /

Schmidt, Mariek. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2006. / Includes map in pocket. Printout. Includes bibliographical references (leaves 170-185). Also available on the World Wide Web.
150

Empreinte isotopique et histoire du volcanisme stratosphérique des 2600 dernières années enregistrées à Dôme C, Antarctique / Isotopic imprint and history of stratospheric volcanism recorded in Dome C, Antarctica, over the last 2600 years

Gautier, Elsa 06 November 2015 (has links)
La glace polaire est sans nul doute la meilleure archive dont nous disposons en terme de paléo volcanisme. Les reconstructions du volcanisme passé se basant sur l'analyse des carottes de glace sont nombreuses. Elles alimentent notamment les modèles de forçage climatique, dans le but d'estimer l'effet refroidissant du volcanisme, dû aux interactions entre aérosols d'acide sulfuriques d'origine volcanique, et le rayonnement solaire incident. Dans ce type de reconstruction, l'un des paramètres-clés pour déterminer l'impact potentiel d'une éruption, est l'identification de son signal sur les deux calottes polaires (signal bipolaire). Cette large répartition spatiale traduit en effet un temps de résidence significatif dans la stratosphère, et donc, un impact climatique important. Les carottes de glace offrent pourtant une alternative intéressante à cette méthode : l'analyse du soufre des sulfates volcaniques révèle la présence d'anomalies isotopiques (Δ33S ≠0) dans les aérosols d'origine stratosphérique, permettant la discrimination entre éruptions de faible impact (troposphériques) et éruptions de fort impact (stratosphériques). L'étude de la signature isotopique atypique des aérosols stratosphériques permet en parallèle de contraindre les mécanismes photochimiques à l'origine de cette anomalie, qui ne sont que partiellement identifiés à ce jour. En 2010-2011, 5 carottes de névé de 100m de long ont été collectées à Dôme C, Antarctique, dans le but de reconstruire une histoire du volcanisme stratosphérique des 2500 dernières années, par la méthode isotopique. Le forage de 5 carottes identiques, à 1 m les unes des autres, nous a permis d'étudier différents aspects de la reconstruction.Premièrement, nous avons pu évaluer la variabilité du dépôt de sulfate à l'échelle locale, et donc, la représentativité statistique d'une seule carotte vis à vis d'une reconstruction volcanique. L'analyse des concentrations de sulfate révèle qu'une importante variabilité locale, associée principalement au déplacement de la neige par le vent, pouvait entraîner un enregistrement non exhaustif des évènements volcaniques (en moyenne 30% d'évènements manquants, par carotte) et une variabilité conséquente du flux archivé (jusqu'à 60%).En second lieu, le niveau de détail de nos analyses (résolution temporelle de chaque éruption) nous a permis de décrire plus précisément la signature des processus indépendants de la masse à l'œuvre dans la stratosphère. Les résultats obtenus ne permettent pas de clore le débat concernant le mécanisme photochimique à l'origine de l'anomalie, mais ils contraignent la signature stratosphérique de façon robuste, notamment en définissant les tendances isotopiques (Δ36S vs. Δ33S et Δ33S vs. δ34S). Les implications de ces contraintes sur la chimie atmosphérique actuelle sont discutées à travers l'utilisation d'un modèle simple ; nous évaluons les paramètres requis, en particulier les proportions des différentes voies d'oxydation stratosphériques (dépendantes et indépendantes de la masse), pour reproduire nos résultats.Enfin, l'analyse systématique de la composition isotopique (Δ33S) des évènements volcaniques nous a permis d'établir un historique du volcanisme stratosphérique enregistré à Dôme C au cours des 2600 dernières années. Nos résultats confirment majoritairement l'origine tropicale (stratosphérique) des évènements identifiés comme tels dans la littérature, et suggèrent le caractère stratosphérique (unipolaire) de quelques éruptions de haute latitude. Les résultats ne remettent pas en question la synchronisation des enregistrements bipolaires récemment établis, et valident l'utilisation de la méthode isotopique pour l'identification des éruptions stratosphériques dans un enregistrement glaciaire. / Polar ice has proved to be a very valuable way to access Earth's volcanism history, and a large number of volcanic reconstructions are based on ice-core analysis. Reconstructions are fed into climate forcing models in order to estimate volcanic cooling effect, resulting from the interactions between volcanic sulfuric acid aerosols and incident solar radiations. In this type of reconstruction, determining the potential impact of an eruption is a key step. It usually relies on the identification of its signal in both polar caps (bipolar signal). This wide spatial distribution indeed reflects a significant residence time in the stratosphere, and thus a sizable impact on climate. However, ice cores offer an interesting alternative to this method: the analysis of volcanic sulfates reveals a mass independent fractionation of sulfur (S-MIF) in the aerosols formed in the stratosphere, allowing us to discriminate between low climatic impact (tropospheric) and high climatic impact eruptions (stratospheric). Studying the unusual isotopic signature of stratospheric aerosols simultaneously allows for constraining photochemical mechanisms responsible for this anomaly (Δ33S≠ 0), which are currently only partially identified. In 2010-2011, 5 100m-cores were drilled at Dome C, Antarctica in order to reconstruct a history of stratospheric volcanic over the past 2500 years, by the isotopic method. Drilling 5 replicate cores, 1 m apart, allowed us to study various aspects of the reconstruction.Firstly, we were able to assess the sulfate deposition variability on a local scale, and therefore the statistical representativeness of a single core in a volcanic reconstruction. Sulfate concentration analysis of the 5 cores reveals that local scale variability, essentially attributed to snow drift and surface roughness at Dome C, can lead to a non-exhaustive record of volcanic events if a single core is used; on average 30% of the volcanic events are missing per core, and the uncertainty on the volcanic flux (up to 60%) is substantial.Secondly, our detailed analysis (temporal resolution of each eruption) has allowed us to more accurately describe the stratospheric S-MIF signature. Implications on current atmospheric chemistry are evaluated through the set of trends obtained in our samples. We used a simple model implemented with fractionation factors available in the literature to account for the isotopic pattern observed on volcanic sulfate deposition. Through this tool, we evaluated the respective proportions of the different mechanisms assumed to take part in the oxidation process (mass dependent vs. mass independent processes, self-shielding vs. spectral isotopic effect) needed to reproduce natural data, in the current state of experimental knowledge.Finally, the systematic analysis of the isotopic composition (Δ33S) in volcanic events has allowed us to establish a history of the stratospheric volcanism recorded in Dome C in the last 2600 years. Through the isotopic method, in most cases we confirmed the tropical origin of volcanic events as reported in the literature. Discrepancies hinted at high latitude stratospheric events, but the synchronization between North and South Pole records recently established is not questioned. The results also validate the use of the isotopic method to identify stratospheric eruptions in a glacial record.

Page generated in 0.0742 seconds