• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 110
  • 29
  • 18
  • 17
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 229
  • 86
  • 44
  • 30
  • 23
  • 18
  • 18
  • 16
  • 15
  • 15
  • 15
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Metamorphosed volcanogenic Pb-Zn deposits at Montauban, Quebec

Stamatelopoulou-Seymour, Karen. January 1975 (has links)
No description available.
172

Volcanic stratigraphy and a kinematic analysis of NE-trending faults of Allens Ranch 7.5' quadrangle, Utah County, Utah

McKean, Adam Paul 13 December 2010 (has links) (PDF)
The mineral resources of the Tintic Mining District are influenced by three major events in its geologic history; the Mesozoic Sevier Orogeny, Paleogene volcanism and Late Neogene Basin and Range extension. In this paper a detailed analysis of each these geologic events is presented to help us understand the structural host, mineralization and exhumation of the Tintic Mining District ore. A kinematic analysis of the faults was completed to determine the origin of NE-trending faults, Sevier Orogeny or Basin and Range extension, in the northern part of the East Tintic Mountains in Allens Ranch 7.5' quadrangle, near the eastern margin of the Great Basin of central Utah. The structural history of the NE-trending faults found in the quadrangle was reconstructed to determine stress directions and fault kinematics. Maximum paleostress direction for the East Tintic fold and thrust system is between 80º–100º with fold axes oriented at ~350º. For example, the Gardison Ridge and Tintic Prince faults are NE-trending right-lateral transverse faults that formed at ~30º to paleostress directions similar to those of the Sevier Orogeny. The dominant NE-trending faults in the region are likely due to (1) differential shortening during progressive orocline development, (2) the pre-deformational Pennsylvanian-Permian Oquirrh basin geometry, and (3) the influence of the Leamington transverse zones of the Provo salient. Conversely, mixed paleostress directions for the north-trending Tintic Davis Canyon fault show it is a Basin and Range extension-related normal fault that may have originated as a Sevier related fault. Other N-trending faults within the quadrangle are only related to Basin and Range extension. However, large offset, range-bounding faults are buried by valley fill throughout the quadrangle and no young fault scarps are identified cutting Lake Bonneville deposits. An Oligocene to Miocene suite of extrusive volcanic units in the quadrangle correlates well with those of the East Tintic and Soldiers Pass volcanic fields. The Paleogene volcanic section is dominated by a suite of high-K calc-alkaline extrusive rocks (35 to 32 Ma). This intermediate to silicic sequence was followed by eruption of the mildly alkaline Mosida Basalt during the Miocene (19.5 Ma) marking the transition from subduction-related intermediate and silicic volcanism to extension-related mafic volcanism in the eastern Great Basin.
173

Mineral chemistry of basalts recovered from Hotspot Snake River Scientific Drilling Project, Idaho: Source and crystallization characteristics

Bradshaw, Richard W. 13 July 2012 (has links) (PDF)
Mineral chemistry and petrography of basalts from the Kimama drill core recovered by Hotspot: Snake River Scientific Drilling Project, Idaho establish crystallization conditions of these lavas. Twenty-three basalt samples, from 20 individual lava flows were sampled from the upper 1000 m (of the 1912 m drilled) core drilled on the axis of the Snake River Plain, and represent approximately 3 m.y. of volcanism (rocks at the bottom of the hole are ~6 Ma). Rock from the upper 1000 m are typically fresh, while those lower in the core are more altered and are less likely to preserve fresh phenocrysts to analyze. Intratelluric phenocrysts (pre-eruption) are: olivine, plagioclase and Cr-spinel inclusions in olivine and plagioclase; groundmass phases (post-eruption) are: olivine, plagioclase, clinopyroxene, magnetite and ilmenite. Olivine core compositions range from Fo84-68, plagioclase cores range from An80-62, clinopyroxene ranges in composition from Wo47-34, En47-28, Fs30-15, spinel inclusions are Cr (up to 20 wt % Cr2O3) and Al-rich (up to 35 wt % Al2O3) and evolve to lower concentrations of Cr and Al and higher Fe and Ti, chromian titanomagnetite to magnetite, and ilmenite are groundmass oxide phases. Thermobarometry of Kimama core basalts indicates that the phenocryst phases crystallized at temperatures of 1155 to 1255°C at depths of 7 to 17 km, which is within or near the seismically imaged mid-crustal sill. Plagioclase hygrometry suggests that these lavas are relatively anhydrous with less than 0.4 wt % H2O. Groundmass phases crystallized at lower temperatures (<1140°C) after eruption. Oxygen fugacity inferred from Fe-Ti oxide equilibria is at or just below the QFM buffer. The origin of the basaltic rocks of the Snake River Plain has been attributed to a mantle plume or to other, shallow mantle processes. Mineral and whole rock major and trace element geochemistry of the olivine tholeiites from the Kimama core are used to distinguish between these two sources (deep or shallow mantle). Whole rock compositions were corrected for plagioclase and olivine fractionation to calculate primary liquids to estimate mantle potential temperatures. Olivine phenocrysts have the pyroxenite source characteristics of low Mn and Ca, but a peridotite source characteristic of low Ni. Thus, trace element models were used to test whether there is pyroxenite in the source of the Snake River Plain basalts, as hypothesized for Hawaii and other plume-related hotspots (e.g., Sobolev et al., 2005; Herzberg, 2011). Olivine chemistry and trace element models establish that the basalt source is a spinel peridotite, not a pyroxenite. The average mantle potential temperature obtained for these samples is 1577°C, 177°C hotter than ambient mantle, suggesting that the basaltic liquids were derived from a thermal plume. Silica activity barometry shows that melt segregation occurs between 80 and 110 km depth, which is within or very near the spinel stability field, and suggests that the lithosphere has been eroded by the plume to a maximum depth of 80 km, and recent mantle tomography suggests that it may be even thinner.
174

The Origin and Evolution of Active Spreading Segments in the Northern Lau Basin

Ryan, Michael 23 January 2024 (has links)
Extension at oceanic spreading centers ranges from ultra-slow (dominantly tectonic) to ultra-fast spreading (dominantly magmatic). This variation is reflected in the morphology of the spreading ridge segments and the magmatic productivity observed on the seafloor. These relationships are well understood at Mid-Ocean Ridges (MOR), but less is known about spreading centers above subduction zones. This study is part of a larger initiative to create the first 1:1,000,000 scale geological maps of different subduction zones at the Indo-Australian margin. This is a region of some of the fastest-growing crust on Earth and exhibits prolific magmatic-hydrothermal activity in back-arc basins. Previous work has shown that crustal growth associated with westward subduction of the Pacific Plate is characterized by highly distributed extension in back-arc basins, with numerous and simultaneously active spreading centers. In the NW Lau Basin, two of the spreading centers are punctuated by large-scale magmatic centers that coincide with anomalous mantle input (as documented by large-scale mantle helium anomalies) − features that are not well known in other basins. Detailed mapping at 1:200,000 scale shows that these spreading centers are related to near-field transcurrent faulting that developed in the early stages of the Lau back-arc basin. Translation across two oppositely moving fault zones induced rotation of the intervening crust and two anomalous spreading centers (Rochambeau Rifts and the Northwest Lau Spreading Center) opened obliquely to these structures. Both show inflated axial volcanic ridges that may be a product of an anomalous melt supply relative to the spreading rate. The marked variation in the morphology and magmatic output are thought to be controlled by input of melt from adjacent sources (Samoan plume) or the channeling of melt into a zone of thicker pre-existing crust, or both. These findings have important implications for understanding the origins of large-scale magmatic input in back-arc basins, where many fossil ore deposits have formed, thus providing important guides for resource exploration in ancient volcanic terranes on land.
175

Exploring the Polar Layered Deposits of Mars through spectroscopy and rover-based analog studies

Prakhar Sinha (13956780) 14 October 2022 (has links)
<p>Mars’ Polar layered Deposits (PLD) accumulated over the last few millions of years due to seasonal buildup of frost trapping atmospheric gasses and incoming sediments, thereby preserving the history of Mars' recent climate in the form of an ice-rich geologic record. The PLD includes both the North Polar Layered Deposits (NPLD) and the South Polar Layered Deposits (SPLD) which are estimated to be up to 5 Mya and 100 Mya old respectively. Characterizing the contents of these deposits is essential to understand the role of geologic and climatic processes recently active on Mars. The Mars scientific community recommends robotic exploration of these icy NPLD to sample the ice and extract recent climate records; however, linking the geologic record to the climatic history will require quantitative dating of the NPLD. The SPLD is thought to be older than the north polar deposits, so the stratigraphic records of the SPLD are a window to look deeper into the climatic history of Amazonian Mars. Deciphering the paleoenvironment at the PLD requires characterization of the ice-rich deposits, however, the origin, composition, transport histories, and alteration environment of sediments within the deposits are not well constrained.</p> <p>In this study we use orbital reflectance spectroscopy to show for the first time that dateable mafic lithics are present throughout the PLD. We find significant glass as well as diverse crystalline minerals, which suggests that surface processes like impacts and volcanism were active during the late Amazonian and transported sand-sized and finer sediments from across the planet to the poles. In situ investigation of the PLD will thus provide critical quantitative age constraint on both the recent geologic and climatic histories of Mars. Previous studies have confirmed widespread detection of sulfates at the NPLD and here we show that sulfates dominate the alteration mineralogy at the SPLD suggesting acidic, oxidizing, and evaporitic conditions. Based on this more extensive survey, previously reported rare detection of smectites and hydrated silica in the SPLD is likely due to ballistic emplacement by impacts from targets on surrounding smectite-bearing Noachian terrains.</p> <p>Detrital ice-rich sediments within the PLD are a complex mixture of mafic minerals and weathering products from multiple sources and are continuously reworked. In order to investigate the material and grain-size dependent effects of chemical and physical weathering in a cold and wet basaltic environment, a rover-based Mars analog study is conducted in the glacio-fluvial-aeolian landscapes of Iceland. A DCS-based color analysis technique is employed in tandem with VNIR spectroscopy and XRF analysis to develop a strategy for conducting sediment provenance. We observe that DCS-based color analysis is a powerful tool for identifying spectral diversity, and that it has the capability to differentiate primary minerals from alteration minerals. Because color analysis can aid in identifying diverse targets for sampling within the rover’s workspace, tactically, DCS colors can be used during operations to link detrital sediments within the rover’s vicinity to surrounding bedrock sources. DCS images enhance our ability to correlate observation of surface features from orbit, extend local mineralogical interpretation to surrounding regions, optimize rover’s traverse and select science targets. </p>
176

Understanding Non-Plume Related Intraplate Volcanism

Mazza, Sarah Elizabeth 21 December 2016 (has links)
Intraplate volcanism is a worldwide phenomenon producing volcanoes away from active plate boundaries, a process that cannot yet be sufficiently explained by plate tectonic processes, and thus is still a missing piece in the understanding of the dynamics and evolution of our planet. Models for the formation of intraplate volcanism are dominated by mantle plumes, but alternative explanations, such as adiabatic decompression triggered by lithospheric delamination, and edge driven convection (EDC), could be responsible for magmatism. This dissertation explores intraplate volcanic locations that do not fit the mantle plume model, and presents geochemical evidence for lithospheric delamination and edge driven convection for the cause of volcanism. I studied an Eocene volcanic swarm exposed in the Appalachian Valley and Ridge Province of Virginia and West Virginia, which are the youngest known igneous rocks along the Eastern North American Margin (ENAM). These magmas provide the only window into the most recent deep processes contributing to the post-rift evolution of this margin. This study presents the first high precision 40Ar/39Ar ages along with new geochemical data, and radiogenic isotopes that constrain the melting conditions and the timing of emplacement. Modeling of the melting conditions suggests that melting occurred under conditions slightly higher than average mantle beneath mid-ocean ridges. Asthenosphere upwelling related to localized lithospheric delamination is a possible process that can explain the intraplate signature of these magmas that lack evidence of a thermal anomaly. The Virginia-West Virginia region of the ENAM also preserves a second post-rift magmatic event in the Late Jurassic. By studying both the Late Jurassic and Eocene magmatic events we can better understand the post-rift evolution of passive margins. This study presents a comprehensive set of geochemical data that includes new 40Ar/39Ar ages, major and trace-element compositions, and analysis of radiogenic isotopes to further constrain their magmatic history. Modeling suggests that the felsic volcanics from both the Late Jurassic and Eocene events are consistent with fractional crystallization. Lithospheric delamination is the best hypothesis for magmatism in Virginia/West Virginia, due to tectonic instabilities that are remnant from the long-term evolution of this margin, resulting in a 'passive-aggressive' margin that records multiple magmatic events long after rifting ended. Finally, Bermuda is an intraplate volcano that has been historically classified as mantle plume related but evidence to support the plume model is lacking. Instead, geophysics have argued that EDC is the best model to explain Bermuda volcanism. This study presents the first geochemical analysis of Bermuda volcanism, and found that Bermuda was built by two different magmatic processes: melting of carbonated peridotite to produce silica under-saturated, trace element enriched volcanics and melting of an enriched upper mantle component that produced silica saturated volcanics. We attribute the cyclicity of silica under-saturated and silica saturated volcanics to EDC melting. / Ph. D.
177

The petrology and geochemistry of Precaldera Magmas, Long Valley Caldera, Eastern California

Chaudet, Roy Edward January 1986 (has links)
Precaldera volcanism between 3.2-2.6 M.a. produced a basalt -trachybasalt -trachyandesite -quartz latite suite peripheral to the present Long Valley caldera from a heterogeneous, interactive, deep crustal magmatic -system. The suite consists of ( 1) widespread, predominately porphyritic olivine-augite basalt / trachybasalt / trachyandesite flow sequences (> 24 km³), (2) local orthopyroxene -phyric silicic trachyandesite flows (> I km³), and (3) sparsely -phyric orthopyroxene -hornblende -plagioclase quartz latite dome-flows and coarsely -phyric biotite -hornblende -plagioclase quartz latite dome-flows ( > 4 km³) erupted in that general sequence. Field, petrographic, and major-, minor-, and trace-element, as well as Sr isotopic studies of representative precaldera lavas on the northwest periphery of the caldera suggest that: (I) the basaltic magmas were generated from a lherzolite partial melt modified by minor crystal fractionation (limited fractionation due to their high incompatible element content) and contamination by older sialic rocks or their derivatives (represented by granitic inclusions, quartz xenocrysts, and progressively higher ⁸⁷Sr/⁸⁶Sr, 0.7062 to 0.7067), (2) the silicic trachyandesite was probably the result of intimate mixing of basaltic and quartz latite magmas (reflected in compositional gaps in progressively more silicic bulk compositional trends and the similarity of the quartz latite and silicic trachyandesite initial ⁸⁷Sr/⁸⁶Sr ratios, 0.7070-0.7074), and (3) the quartz latite was derived by crustal melting at different depths (as reflected in the variable ⁸⁷Sr/⁸⁶Sr, 0.7072-0.7095) and underwent radically changing crystallization conditions and contamination by trachyandesite (represented by heterogeneous mineral assemblages, chemistry, and textures indicating changing equilibrium conditions most evident in the trachyandesite enclave-rich quartz latite). The basaltic magmas provided the heat and mass to the crust promoting partial melting and generation of quartz latitic magmas. Synchronous basaltic intrusion and generation of crustal melts interacted and hybridized to yield trachyandesite. The isolated occurrence of trachyandesite enclaves in the youngest quartz latite dome-flows, suggests the disruption of a quartz latite-trachyandesite interface during late stages of the eruptive drawdown of a small volume magmatic system. Heat from continued basaltic input and coalesence of initially separate quartz latite bodies could possibly have resulted in development of the larger silicic magma chamber from which the younger rhyolitic (Glass Mountain-Bishop Tuft) magmas erupted. / M.S.
178

Mesmerizing Moon Mysteries: Unraveling the Compositions of Irregular Mare Patches (IMPs) Using Remote Observations

Piskurich, Nicholas G 01 January 2024 (has links) (PDF)
Compositional characterization of lunar surface features informs our understanding of the Moon's thermal and magmatic evolution. We investigated the compositions of hypothesized volcanic features known as irregular mare patches (IMPs) and their surroundings to constrain formation mechanisms. We used six datasets to assess the composition of 12 IMPs: 1) Moon Mineralogy Mapper (M3) derived spectral parameters (e.g., band center positions, shapes), 2) Lunar Reconnaissance Orbiter (LRO) Diviner Radiometer Experiment (Diviner) measured Christiansen feature (CF) position, 3) SELENE (Kaguya) Multiband Imager (MI) FeO abundance, 4) Clementine 5-band (Ultraviolet/Visible)-derived FeO abundance, 5) LRO Wide Angle Camera (WAC) TiO2 abundance, and 6) LRO Narrow Angle Camera (NAC) derived single scattering albedo. Our analysis suggests that some IMPs are compositionally unique from their surroundings, while other IMPs exhibit ambiguous compositional trends, which is consistent with the wide variety of geologic settings in which IMPs are situated. Large IMPs are similar to surrounding low albedo dark halos, which could suggest a formation association between IMPs and these dark halo materials. Spectral and photometric comparisons suggest that IMPs' compositions are compatible with Apollo 11 and 17 high-Ti mare basalts, as well as a group of synthetic high-Ca pyroxenes. Future remote sensing orbiters with high spatial resolution are essential to resolve the compositions of smaller IMPs as well as the distinct smooth and rough morphological regions within larger IMPs.
179

Mid-Miocene Magmatic System Development in the Northwestern United States

Brueseke, Matthew Edward 12 April 2006 (has links)
No description available.
180

Structure, geochemistry, and volcanic history of mid-Tertiary rocks in the Kofa Region, southwestern Arizona

Grubensky, Michael J. January 1987 (has links)
No description available.

Page generated in 0.0593 seconds