Spelling suggestions: "subject:"cortex"" "subject:"kortex""
481 |
The relationships between several parameters which may be used to represent atmospheric vorticesUnknown Date (has links)
"The study was restricted to cyclones which appeared over Europe for at least two consecutive days during 1950"--Page v. The statistical relationships between five parameters which may be used to represent an atmospheric vortex are studied. These parameters are: the central height, ?h, the space change of height, ?h, a size factor, D, the mean gradient, h, and the "gradient-area index", I. The primary purpose of the study is to determine the relationship between the central height and each of the other parameters. The study was restricted to cyclones which appeared over Europe for at least two consecutive days during 1950. All measurements were made on the 500-mb chart. Each parameter was evaluated for 263 cyclones and the 24-hr change of each parameter was computed for 208 cyclones. The methods used to evaluate each parameter are discussed. For each pair of parameters, linear correlation coefficients were computed from grouped data. / "A Paper." / Typescript. / "Submitted to the Graduate Council of Florida State University in partial fulfillment of the requirements for the degree of Master of Science." / Advisor: Thomas A. Gleeson, Professor Directing Paper. / Author's name handwritten on cover: Robert B. DesJardins. / Includes bibliographical references.
|
482 |
Quality control and verification of Doppler spectra collected from a vertically pointing FMCW radar deployed during VORTEX-SoutheastSusan Lynn Beveridge (11083734) 22 July 2021 (has links)
<p>The University of Massachusetts S-band frequency-modulated, continuous-wave radar (UMass FMCW) was deployed to monitor the growth of the convective boundary layer over northern Alabama during the Verification of the Origins of Rotation in Tornadoes Experiment-Southeast (VORTEX-SE). The Doppler spectra collected in 2016 from the vertically-pointing UMass FMCW contain “spurs”, or spurious spectral peaks, caused by high-voltage switching power supplies in the traveling wave tube amplifier. In the original data processing scheme for this radar, a median filtering method was used to eliminate most of the spurs, but the largest ones persisted, which significantly degraded the quality of derived radar moments (e.g., reflectivity, Doppler velocity, and spectrum width) and hindered further analysis of these data (e.g., boundary layer height tracking). </p><p><br></p><p>In this study, a novel “in-painting” image processing technique was applied to remove the spurs in the Doppler spectra. We hypothesized the in-painting method would exhibit superior performance to the median filter at removing large spectral peaks, and also improve downstream radar products derived from the spectra. First, a Laplacian filter identified and masked spikes in the spectra that were characteristic of the spurs in shape and amplitude. The in-painting method then filled in masked areas based on surrounding data. Via a histogram analysis, the in-painting method was found to be more effective than the median filter at removing the large spurs from the Doppler spectra. The radar moments were then recomputed using a coherent power (CP) technique, resulting in cleaner reflectivity, Doppler velocity, and spectrum width data. Improvement was also found downstream when a boundary layer height detection algorithm was applied to the moments generated from the in- painted spectra. Output from the boundary layer height detection algorithm was then used to verify forecast boundary layer height from the Advanced Regional Prediction System (ARPS) model for the 31 March 2016 VORTEX-SE tornadic case study. </p>
|
483 |
Manipulation of Phase and Polarization with Liquid Crystal Technology and its Application in Advanced OpticsAlsaiari, Fatimah 11 May 2022 (has links)
The use of Liquid Crystal (LC) materials, mainly in display applications, has contributed to major advancement in liquid crystal science and technology. New and more complex phases of liquid crystals were developed to compete with conventional nematic LC displays. The challenge now is to manufacture high birefringence liquid crystal materials with low viscosity. LC is also used in many other applications, such as temperature sensors and photonics beam shaping in the form of spatial light modulators (SLM) and q-plates. The first objective of this thesis is to investigate the magic mirror effect using a SLM following Sir Michael Berry’s theory. Here, we demonstrated a simple way of producing the magic mirror effect using LC devices and aimed to use a micron-sized device to shape the phase and polarization of light with gentle phase variation. We were able to generate the magic mirror image intensity pattern, both experimentally and theoretically. This was done by computing and generating the desired phase pattern of an image on the SLM, then aligning light propagation through this phase pattern. The experimental and theoretical results showed good agreement when comparing the produced intensity patterns. In the second part of this thesis, we experimentally investigated the use of structured photons, created using q-plates, which is a birefringent liquid crystal cell of OAM and SAM coupling, in quantum key distribution (QKD) using the BB84 protocol through orbital angular momentum (OAM) maintaining optical fibres. Here, we were successful in generating a secure key between two parties with a quantum bit error rate of 8.6% which is below the security threshold of 11%. This work demonstrates the feasibility of using structured light in QKD through fibres to boost key rates and security.
|
484 |
An experimental study of the interactions between Ekman layers and an annular vortexGreen, Albert Wise January 1969 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Meteorology, 1969. / Vita. / Bibliography: leaves 56-57. / by Albert W. Green, Jr. / Ph.D.
|
485 |
Effect of Slip on Flow Past Superhydrophobic CylindersMuralidhar, Pranesh 01 January 2012 (has links) (PDF)
Superhydrophobic surfaces are a class of surfaces that have a microscale roughness imposed on an already hydrophobic surface, akin to a lotus leaf. These surfaces have been shown to produce significant drag reduction for both laminar and turbulent flows of water through large and small-scale channels. The goal of this thesis was to explore how these surfaces alter the vortex shedding dynamics of a cylindrical body when coated on its surface, thus leading to an alteration in drag and lift on these surfaces. A cylindrical body was chosen as it is a very nice representative bluff body and sets the stage for predicting the behavior of hydrofoils and other bluff bodies under flow with a slip boundary condition. In this work, a series of experiments were performed which investigated the effect of superhydrophobic-induced slip on the flow past a circular cylinder. In these experiments, circular cylinders were coated with a series of superhydrophobic surfaces fabricated from PDMS with well-defined micron-sized patterns of surface roughness or random slip surfaces fabricated by sanding Teflon cylinders or spray painting superhydrophobic paint on a smooth cylinder. The presence of the superhydrophobic surface was found to have a significant effect on the vortex shedding dynamics in the wake of the circular cylinder. When compared to a smooth, no-slip cylinder, cylinders coated with superhydrophobic surfaces were found to delay the onset of vortex shedding and increase the length of the recirculation region in the wake of the cylinder. For superhydrophobic surfaces with ridges aligned in the flow direction the separation point was found to move further upstream towards the front stagnation point of the cylinder and the vortex shedding frequency was found to increase. For superhydrophobic surfaces with ridges running normal to the flow direction, the separation point and shedding frequency trends were reversed. The vortices shed from these surfaces were found to be weaker and less interlaced leading to reduced circulation and lift forces on these cylinders. The effect of slip on bluff bodies and separating flow was dealt with in detail in this thesis and the results could be used to predict the impact of these surfaces on the flow past hydrofoils which combine skin friction dominated flow with separating flow.
|
486 |
Popup Height and the Dynamics of Rising Buoyant SpheresMunns, Randy H. 11 July 2013 (has links) (PDF)
In this paper the popup height of rising buoyant spheres is studied over a range of distinct release depths along with the accompanying velocities and accelerations near the free surface. In the past, regimes of motion due to vortex induced vibrations have been classified based on trajectories below the free surface. This study focuses on the popup height, velocity and acceleration at free surface exit, and vortex shedding in order to further define regimes of motion experienced by a rising buoyant sphere. Varying the release depth below the free surface reveals varying exit angles, velocities, accelerations, and popup heights at surface exit. Vortex shedding prior to free surface exit causes decelerations contributing to the variation in exit velocities and resulting popup heights. Using high-speed imaging and particle image velocimetry, we examine the trajectories, accelerations, velocities and vortex shedding events for spheres of different mass ratios over a range of Reynolds number (2e4 >Re> 6e5). At lower Re, spheres released from shallow release depths result in greater accelerations and velocities at free surface exit along with greater popup heights compared to releases from deeper depths. After reaching a depth which results in a minimum popup height, further increasing the release depth reveals an increase in popup height demonstrating an oscillatory pattern due to the sphere being released from vortex forces after shedding. This pattern is repeated as the popup height again decreases with greater release depths. For spheres of greater Re, popup height increases linearly with release depth, demonstrating continued accelerations at free surface exit.
|
487 |
A Three Dimensional Vortex Particle-Panel Code for Modeling Propeller-Airframe InteractionCalabretta, Jacob S 01 June 2010 (has links) (PDF)
Analysis of the aerodynamic effects of a propeller flowfield on bodies downstream of the propeller is a complex task. These interaction effects can have serious repercussions for many aspects of the vehicle, including drag changes resulting in larger power requirements, stability changes resulting in adjustments to stabilizer sizing, and lift changes requiring wing planform adjustments.
Historically it has been difficult to accurately account for these effects at any stage during the design process. More recently methods using Euler solvers have been developed that capture interference effects well, although they don't provide an ideal tool for early stages of aircraft design, due to computational cost and the time and expense of setting up complex volume grids. This research proposes a method to fill the void of an interference model useful to the aircraft conceptual and preliminary designer.
The proposed method combines a flexible and adaptable tool already familiar to the conceptual designer in the aerodynamic panel code, with a pseudo-steady slipstream model wherein rotational effects are discretized onto vortex particle point elements. The method maintains a freedom from volume grids that are so often necessary in the existing interference models. In addition to the lack of a volume grid, the relative computational simplicity allows the aircraft designer the freedom to rapidly test radically different configurations, including more unconventional designs like the channel wing, thereby providing a much broader design space than otherwise possible.
Throughout the course of the research, verification and validation studies were conducted to ensure the most accurate model possible was being applied. Once the vortex particle scheme had been verified, and the ability to model an actuator disk with vortex particles had been validated, the overall product was compared against propeller-wing wind tunnel results conducted specifically as benchmarks for numerical methods.
The method discussed in this work provides a glimpse into the possibility of pseudo-steady interference modeling using vortex particles. A great groundwork has been laid that already provides reasonable results, and many areas of interest have been discovered where future work could improve the method further. The current state of the method is demonstrated through simulations of several configurations including a wing and nacelle and a channel wing.
|
488 |
All The King's Horses: The Delta Wing Leading-Edge Vortex System Undergoing Vortex Breakdown: A Contribution to its characterization and Control under Dynamic ConditionsSchaeffler, Norman W. 27 April 1998 (has links)
The quality of the flow over a 75 degree-sweep delta wing was documented for steady angles of attack and during dynamic maneuvers with and without the use of two control surfaces. The three-dimensional velocity field over a delta wing at a steady angle of attack of 38 degrees and Reynolds number of 72,000 was mapped out using laser-Doppler velocimetry over one side of the wing. The three-dimensional streamline and vortex line distributions were visualized. Isosurfaces of vorticity, planar distributions of helicity and all three vorticity components, and the indicator of the stability of the core were studied and compared to see which indicated breakdown first. Visualization of the streamlines and vortex lines near the core of the vortex indicate that the core has a strong inviscid character, and hence Reynolds number independence, upstream of breakdown, with viscous effects becoming more important downstream of the breakdown location. The effect of cavity flaps on the flow over a delta wing was documented for steady angles of attack in the range 28 degrees to 42 degrees by flow visualization and surface pressure measurements at a Reynolds number of 470,000 and 1,000,000, respectfully. It was found that the cavity flaps postpone the occurrence of vortex breakdown to higher angles of attack than can be realized by the basic delta wing. The effect of continuously deployed cavity flaps during a dynamic pitch-up maneuver of a delta wing on the surface pressure distribution were recorded for a reduced frequency of 0.0089 and a Reynolds number of 1,300,000. The effect of deploying a set of cavity flaps <u>during</u> a dynamic pitch-up maneuver on the surface pressure distribution was recorded for a reduced frequency of 0.0089 and a Reynolds number of 1,300,000 and 187,000. The active deployment of the cavity flaps was shown to have a short-lived beneficial effect on the surface pressure distribution. The effect on the surface pressure distribution of the varying the reduced frequency at constant Reynolds number for a plain delta wing was documented in the reduced frequency range of 0.0089 to 0.0267. The effect of the active deployment of an apex flap <u>during</u> a pitch-up maneuver on the surface pressure distribution at Reynolds numbers of 532,000, 1,000,000, and 1,390,000 were documented with reduced frequencies of 0.0053 to 0.0114 with flap deployment locations in the range of 21° to 36° . The apex flap deployment was found to have a beneficial effect on the surface pressure distribution during the maneuver and in the post-stall regime after the maneuver is completed. / Ph. D.
|
489 |
The Development and Applications of a Numerical Method for Compressible Vorticity Confinement in Vortex-Dominant FlowsHu, Guangchu 24 August 2001 (has links)
An accurate and efficient numerical method for Compressible Vorticity Confinement (CVC) was developed. The methodology follows from Steinhoff's vorticity confinement approach that was developed for incompressible flows. In this research, the extension of this approach to compressible flows has been developed by adding a vorticity confinement term as a "body force" into the governing compressible flow equations. This vorticity confinement term tends to cancel the numerical dissipative errors inherently related to the numerical discretization in regions of strong vorticity gradients.
The accuracy, reliability, efficiency and robustness of this method were investigated using two methods. One approach is directly applying the CVC method to several real engineering problems involving complex vortex structures and assessing the accuracy by comparison with existing experimental data and with other computational techniques. Examples considered include supersonic conical flows over delta wings, shock-bubble and shock-vortex interactions, the turbulent flow around a square cylinder and the turbulent flow past a surface-mounted 3D cube in a channel floor. A second approach for evaluating the effectiveness of the CVC method is by solving simplified "model problems" and comparing with exact solutions. Problems that we have considered are a two-dimensional supersonic shear layer, flow over a flat plate and a two-dimensional vortex moving in a uniform stream.
The effectiveness of the compressible confinement method for flows with shock waves and vortices was evaluated on several complex flow applications. The supersonic flow over a delta wing at high angle of attack produces a leeward vortex separated from the wing and cross flow, as well as bow shock waves. The vorticity confinement solutions compare very favorably with experimental data and with other calculations performed on dense, locally refined grids. Other cases evaluated include isolated shock-bubble and shock-vortex interactions. The resulting complex, unsteady flow structures compare very favorably with experimental data and computations using higher-order methods and highly adaptive meshes.
Two cases involving massive flow separation were considered. First the two-dimensional flow over a square cylinder was considered. The CVC method was applied to this problem using the confinement term added to the inviscid formulation, but with the no-slip condition enforced. This produced an unsteady separated flow that agreed well with experimental data and existing LES and RANS calculations. The next case described is the flow over a cubic protuberance on the floor of a channel. This flow field has a very complex flow structure involving a horseshoe vortex, a primary separation vortex and secondary corner vortices. The computational flow structures and velocity profiles were in good agreement with time-averaged values of the experimental data and with LES simulations, even though the confinement approach utilized more than a factor of 50 fewer cells (about 20,000 compared to over 1 million).
In order to better understand the applicability and limitations of the vorticity confinement, particularly the compressible formulation, we have considered several simple model problems. Classical accuracy has been evaluated using a supersonic shear layer problem computed on several grids and over a range of values of confinement parameter. The flow over a flat plate was utilized to study how vorticity confinement can serve as a crude turbulent boundary layer model. Then we utilized numerical experiments with a single vortex in order to evaluate a number of consistency issues related to the numerical implementation of compressible confinement. / Ph. D.
|
490 |
The hemisphere-cylinder at an angle of attackHoang, Ngoc T. 06 August 2007 (has links)
An experimental investigation was carried out of the flow over a hemisphere-cylinder at angles of attack (α = 0° to 90°, Visualizations of skin-friction lines were conducted and were focused mainly on the development of the laminar separation bubble as a function of angle of attack, the conditions under which open and closed separation exist and the interaction between the separation bubble and the leeward vortices. A digital processing method was developed to convert flow visualizations to numerical data. Static pressure measurements over a large range of Reynolds numbers were obtained for two models with different sizes and the same length-to-diameter ratios. Detailed velocity fields, mapped out by a seven hole probe and a laser-Doppler velocimeter (LDV) probe, were carefully examined to provide information on the development of vortical structures on the surface of the model. Comparisons were made of the results obtained using these two instruments. The flowfield in the wake of the hemispherecylinder was also examined at an angle of attack α = 30°. A small bead was strategically placed near the nose to force vortex asymmetry. Difference sizes of bead were also tested to investigate the effectiveness on the asymmetric pattern. Hot-wire anemometers and a dynamic signal analyzer were employed to study the unsteady motion of leeward vortices. / Ph. D.
|
Page generated in 0.0329 seconds