• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tracking domain knowledge based on segmented textual sources

Kalledat, Tobias 11 May 2009 (has links)
Die hier vorliegende Forschungsarbeit hat zum Ziel, Erkenntnisse über den Einfluss der Vorverarbeitung auf die Ergebnisse der Wissensgenerierung zu gewinnen und konkrete Handlungsempfehlungen für die geeignete Vorverarbeitung von Textkorpora in Text Data Mining (TDM) Vorhaben zu geben. Der Fokus liegt dabei auf der Extraktion und der Verfolgung von Konzepten innerhalb bestimmter Wissensdomänen mit Hilfe eines methodischen Ansatzes, der auf der waagerechten und senkrechten Segmentierung von Korpora basiert. Ergebnis sind zeitlich segmentierte Teilkorpora, welche die Persistenzeigenschaft der enthaltenen Terme widerspiegeln. Innerhalb jedes zeitlich segmentierten Teilkorpus können jeweils Cluster von Termen gebildet werden, wobei eines diejenigen Terme enthält, die bezogen auf das Gesamtkorpus nicht persistent sind und das andere Cluster diejenigen, die in allen zeitlichen Segmenten vorkommen. Auf Grundlage einfacher Häufigkeitsmaße kann gezeigt werden, dass allein die statistische Qualität eines einzelnen Korpus es erlaubt, die Vorverarbeitungsqualität zu messen. Vergleichskorpora sind nicht notwendig. Die Zeitreihen der Häufigkeitsmaße zeigen signifikante negative Korrelationen zwischen dem Cluster von Termen, die permanent auftreten, und demjenigen das die Terme enthält, die nicht persistent in allen zeitlichen Segmenten des Korpus vorkommen. Dies trifft ausschließlich auf das optimal vorverarbeitete Korpus zu und findet sich nicht in den anderen Test Sets, deren Vorverarbeitungsqualität gering war. Werden die häufigsten Terme unter Verwendung domänenspezifischer Taxonomien zu Konzepten gruppiert, zeigt sich eine signifikante negative Korrelation zwischen der Anzahl unterschiedlicher Terme pro Zeitsegment und den einer Taxonomie zugeordneten Termen. Dies trifft wiederum nur für das Korpus mit hoher Vorverarbeitungsqualität zu. Eine semantische Analyse auf einem mit Hilfe einer Schwellenwert basierenden TDM Methode aufbereiteten Datenbestand ergab signifikant unterschiedliche Resultate an generiertem Wissen, abhängig von der Qualität der Datenvorverarbeitung. Mit den in dieser Forschungsarbeit vorgestellten Methoden und Maßzahlen ist sowohl die Qualität der verwendeten Quellkorpora, als auch die Qualität der angewandten Taxonomien messbar. Basierend auf diesen Erkenntnissen werden Indikatoren für die Messung und Bewertung von Korpora und Taxonomien entwickelt sowie Empfehlungen für eine dem Ziel des nachfolgenden Analyseprozesses adäquate Vorverarbeitung gegeben. / The research work available here has the goal of analysing the influence of pre-processing on the results of the generation of knowledge and of giving concrete recommendations for action for suitable pre-processing of text corpora in TDM. The research introduced here focuses on the extraction and tracking of concepts within certain knowledge domains using an approach of horizontally (timeline) and vertically (persistence of terms) segmenting of corpora. The result is a set of segmented corpora according to the timeline. Within each timeline segment clusters of concepts can be built according to their persistence quality in relation to each single time-based corpus segment and to the whole corpus. Based on a simple frequency measure it can be shown that only the statistical quality of a single corpus allows measuring the pre-processing quality. It is not necessary to use comparison corpora. The time series of the frequency measure have significant negative correlations between the two clusters of concepts that occur permanently and others that vary within an optimal pre-processed corpus. This was found to be the opposite in every other test set that was pre-processed with lower quality. The most frequent terms were grouped into concepts by the use of domain-specific taxonomies. A significant negative correlation was found between the time series of different terms per yearly corpus segments and the terms assigned to taxonomy for corpora with high quality level of pre-processing. A semantic analysis based on a simple TDM method with significant frequency threshold measures resulted in significant different knowledge extracted from corpora with different qualities of pre-processing. With measures introduced in this research it is possible to measure the quality of applied taxonomy. Rules for the measuring of corpus as well as taxonomy quality were derived from these results and advice suggested for the appropriate level of pre-processing.

Page generated in 0.0759 seconds