• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 5
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 47
  • 47
  • 47
  • 30
  • 19
  • 18
  • 17
  • 15
  • 13
  • 13
  • 12
  • 11
  • 10
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Structural Brain Abnormalities in Temporomandibular Disorders

Moayedi, Massieh 18 December 2012 (has links)
Temporomandibular disorders (TMD) are a family of prevalent chronic pain disorders affecting masticatory muscles and/or the temporomandibular joint. There is no unequivocally recognized peripheral aetiology for idiopathic TMD. The central nervous system (CNS) may initiate and/or maintain the pain in idiopathic TMD due to sustained or long-term nociceptive input that induces maladaptive brain plasticity, and/or to inherent personality-related factors that may reduce the brain's capacity to modulate nociceptive activity. The main aim of this thesis is to determine whether there are structural neural abnormalities in patients with TMD, and whether these abnormalities are related to TMD pain characteristics, or to neuroticism. The specific aims are to delineate in TMD: (1) gray matter (GM) brain abnormalities and the contribution of pain and neuroticism to abnormalities; (2) the contribution of abnormal brain GM aging in focal cortical regions associated with nociceptive processes; and (3) abnormalities in brain white matter and trigeminal nerve and the contribution of pain. In groups of 17 female patients with TMD and 17 age- and sex- matched controls, magnetic resonance imaging revealed that patients with TMD had: (1) thicker cortex in the somatosensory, ventrolateral prefrontal and frontal polar cortices than controls, (2) cortical thickness in motor and cognitive areas that was negatively related to pain intensity, orbitofrontal cortical thickness that was negatively correlated to pain unpleasantness, and thalamic GM volume correlated to TMD duration, (3) an abnormal relationship between neuroticism and orbitofrontal cortical thickness, (4) abnormal GM aging in nociceptive, modulatory and motor areas, (5) widespread abnormalities in white matter tracts in the brain related to sensory, motor and cognitive functions, (6) reduced trigeminal nerve integrity related to pain duration, and (7) abnormal connectivity in cognitive and modulatory brain regions. In sum, this thesis demonstrates for the first time abnormalities in both peripheral nerve and CNS in patients with TMD.
22

Structural Brain Abnormalities in Temporomandibular Disorders

Moayedi, Massieh 18 December 2012 (has links)
Temporomandibular disorders (TMD) are a family of prevalent chronic pain disorders affecting masticatory muscles and/or the temporomandibular joint. There is no unequivocally recognized peripheral aetiology for idiopathic TMD. The central nervous system (CNS) may initiate and/or maintain the pain in idiopathic TMD due to sustained or long-term nociceptive input that induces maladaptive brain plasticity, and/or to inherent personality-related factors that may reduce the brain's capacity to modulate nociceptive activity. The main aim of this thesis is to determine whether there are structural neural abnormalities in patients with TMD, and whether these abnormalities are related to TMD pain characteristics, or to neuroticism. The specific aims are to delineate in TMD: (1) gray matter (GM) brain abnormalities and the contribution of pain and neuroticism to abnormalities; (2) the contribution of abnormal brain GM aging in focal cortical regions associated with nociceptive processes; and (3) abnormalities in brain white matter and trigeminal nerve and the contribution of pain. In groups of 17 female patients with TMD and 17 age- and sex- matched controls, magnetic resonance imaging revealed that patients with TMD had: (1) thicker cortex in the somatosensory, ventrolateral prefrontal and frontal polar cortices than controls, (2) cortical thickness in motor and cognitive areas that was negatively related to pain intensity, orbitofrontal cortical thickness that was negatively correlated to pain unpleasantness, and thalamic GM volume correlated to TMD duration, (3) an abnormal relationship between neuroticism and orbitofrontal cortical thickness, (4) abnormal GM aging in nociceptive, modulatory and motor areas, (5) widespread abnormalities in white matter tracts in the brain related to sensory, motor and cognitive functions, (6) reduced trigeminal nerve integrity related to pain duration, and (7) abnormal connectivity in cognitive and modulatory brain regions. In sum, this thesis demonstrates for the first time abnormalities in both peripheral nerve and CNS in patients with TMD.
23

The Neural Correlates of Auditory Processing in Adults and Children who Stutter

Beal, Deryk Scott 05 August 2010 (has links)
This dissertation is comprised of four studies investigating the hypothesis that adults and children who stutter differ from their same-age fluent peers in the neuroanatomy and neurophysiology underlying auditory speech processing. It has been consistently reported that adults who stutter demonstrate unique functional neural activation patterns during speech production, including reduced auditory activation, relative to nonstutterers. The extent to which these functional differences are accompanied by abnormal morphology of the brain in stutterers is unclear. The first study in this dissertation examined the neuroanatomical differences in speech-related cortex between adults who do and do not stutter using magnetic resonance imaging and voxel-based morphometry analyses. Adults who stutter were found to have localized grey matter volume increases in auditory and motor speech related cortex. The second study extended this line of research to children who stutter, who were found to have localized grey matter volume decreases in motor speech related cortex. Together, these studies suggest an abnormal trajectory of regional grey matter development in motor speech cortex of people who stutter. The last two studies investigated the mechanism underlying the repeated findings of reduced auditory activation during speech in people who stutter in more detail. Magnetoencephalography was used to investigate the hypothesis that people who stutter have increased speech induced suppression of early evoked auditory responses. Adults and children who stutter demonstrated typical levels of speech induced suppression relative to fluent peers. However, adults and children who stutter showed differences from peers in the timing of cortical auditory responses. Taken together, the studies demonstrate structural and functional abnormalities in brain regions related to auditory processing and point to the possibility that people who stutter have difficulty forming the neural representations of speech sounds necessary for fluent speech production.
24

Compreens?o de texto escrito e oral e correlatados neurais na les?o de hemisf?rio esquerdo p?s acidente vascular cerebral

Martins, Sabrine Amaral 28 March 2018 (has links)
Submitted by PPG Letras (letraspg@pucrs.br) on 2018-04-26T17:05:23Z No. of bitstreams: 1 Tese_Sabrine Cristine Hubner.pdf: 2098756 bytes, checksum: 9b73c0fb004e2143274124c300170dee (MD5) / Approved for entry into archive by Sheila Dias (sheila.dias@pucrs.br) on 2018-05-09T12:48:28Z (GMT) No. of bitstreams: 1 Tese_Sabrine Cristine Hubner.pdf: 2098756 bytes, checksum: 9b73c0fb004e2143274124c300170dee (MD5) / Made available in DSpace on 2018-05-09T13:29:27Z (GMT). No. of bitstreams: 1 Tese_Sabrine Cristine Hubner.pdf: 2098756 bytes, checksum: 9b73c0fb004e2143274124c300170dee (MD5) Previous issue date: 2018-03-28 / Conselho Nacional de Pesquisa e Desenvolvimento Cient?fico e Tecnol?gico - CNPq / Written and oral text comprehension abilities are indispensable for human experiences. Strokes causing left hemisphere (LH) damage may impact comprehension and textual production. However, little is known about this influence at the textual/discursive level, including the comparison between oral and written modalities in this kind of lesion. This research aimed at investigating text comprehension in two modalities of presentation (read and heard) by left brain damaged individuals (LBD) and healthy controls, comparing their performance in the micro- and macro-structural levels of text comprehension to neuropsychological data and to density of the brain areas involved. In order to do that, we performed two researches, Study 1, with 18 LBD and 10 controls, and Study 2, with 10 LBD and 10 controls, with matched age and education. In both studies, neuropsychological tests assessed working memory, verbal fluency and naming abilities. Comprehension of macro- and microstructural levels was verified by means of six short narratives, presented in oral or written modality. The participants were asked to retell the stories and answer to five interpretation questions. In Study 2, the same method was used, but it included structural magnetic resonance imaging indicating the density of brain regions by voxel-based morphometry (VBM). The results of Study 1 indicated significant differences in narrative comprehension between LBD and controls. The lower performance observed at the macrostructural level of LBD compared to the micro- suggest individuals who had a stroke may face difficulties in the application of macrorules of deletion, construction and generalization, which underlie overall comprehension of a text. The data from Study 2, with a lower number of participants, indicated a tendency to confirm results found in Study 1, with statistical significant differences in benefit of controls at the macrostructural level of oral narratives. We found significant differences between groups regarding the modality of text presentation. In both Study 1 and Study 2, differences were observed between the groups in auditory word span and in naming, with an advantage to controls. The morphometry data of brain regions, related to the participants of Study 2, indicated an integration of areas from left and right hemispheres to process text comprehension in oral and written modalities. In the left hemisphere, precuneus, cerebellum white matter, superior frontal region and medial orbitofrontal region and from the right hemisphere, accumbens and superior temporal sulcus were observed. The right superior temporal sulcus, left precuneus, left cerebellar white matter and superior frontal region are positively correlated among the participants, presenting better performance as the density increases. The left medial orbitofrontal region shows a negative correlation with comprehension. The right accumbens seems to compensate LH demands, showing increased density in the LBD and reduced volume in the controls. The present study intends to contribute to deepen our understanding of the comprehension of texts presented in the oral compared to written modality in the LH lesion, related to neuropsychological and brain data. / Compreender um texto, seja ele ouvido ou lido, ? indispens?vel para as experi?ncias humanas. Acidentes vasculares cerebrais (AVCs) ocorridos em especial no hemisf?rio esquerdo (HE) podem impactar na compreens?o e na produ??o textual. No entanto, pouco ainda se sabe sobre essa influ?ncia no n?vel textual/discursivo, incluindo, por exemplo, a compara??o entre a modalidade oral e escrita na compreens?o textual/discursiva nesse tipo de les?o. Esta pesquisa teve por objetivo investigar a compreens?o de narrativas em duas modalidades de apresenta??o (lidas e ouvidas) por indiv?duos com les?o no hemisf?rio esquerdo (LHE) e controles saud?veis, comparando-se seu desempenho nos n?veis micro- e macroestruturais da compreens?o de narrativas a dados neuropsicol?gicos e ? densidade das ?reas cerebrais implicadas. Para tal, realizamos dois estudos, o Estudo 1, com 18 LHE e 10 controles, e o Estudo 2, que contemplou exames de neuroimagem, com 10 LHE e 10 controles (os mesmos do Estudo 1), com idade e escolaridade equiparadas. Em ambos os estudos, testes neuropsicol?gicos avaliaram a mem?ria de trabalho, a flu?ncia verbal e a nomea??o. A compreens?o dos n?veis macro- e microestrutural foi verificada por meio de seis narrativas curtas, divididas na modalidade oral ou escrita. Os participantes realizavam um reconto e respondiam a cinco perguntas de interpreta??o. No Estudo 2 empregou-se o mesmo m?todo, por?m com inclus?o de exame de resson?ncia magn?tica estrutural indicando a densidade das regi?es cerebrais pela morfometria baseada em voxels (VBM). Os resultados do Estudo 1 apontaram diferen?as significativas na compreens?o de narrativas entre LHE e controles. Os preju?zos observados no n?vel macroestrutural dos LHE em detrimento do micro- sugerem falhas na aplica??o das macrorregras de dele??o, constru??o e generaliza??o, subjacentes ? compreens?o global de um texto. Os dados do Estudo 2, com menor n?mero de participantes, indicaram uma tend?ncia a corroborar os resultados encontrados no Estudo 1, observando-se diferen?a significativa em benef?cio dos controles no n?vel macroestrutural das narrativas apresentadas oralmente. Foram encontradas diferen?as entre os grupos quanto ? modalidade de apresenta??o dos textos. Tanto no Estudo 1 quanto no Estudo 2 observou-se diferen?as no span auditivo de palavras e na nomea??o, com vantagem para os controles. Os dados da morfometria das regi?es cerebrais, atinentes aos participantes do segundo estudo, apontam uma integra??o de regi?es do hemisf?rio esquerdo e do direito. Do esquerdo, prec?neus, subst?ncia branca do cerebelo, regi?o frontal superior e regi?o orbitofrontal medial e do direito, accumbens e sulco temporal superior foram observadas. O sulco temporal superior direito, o prec?neus esquerdo, a subst?ncia branca cerebelar esquerda e a regi?o frontal superior correlacionam-se positivamente entre os participantes, apresentando desempenho superior ? medida que a densidade aumenta. A regi?o orbitofrontal medial esquerda apresenta correla??o negativa com a compreens?o. A regi?o do accumbens direito parece compensar as demandas do HE, apresentando sua densidade aumentada nos LHE e reduzida nos controles. O presente estudo pretende contribuir para aprofundarmos nossa compreens?o sobre a compreens?o de narrativas apresentadas na modalidade oral versus escrita na les?o de HE, relacionados a dados neuropsicol?gicos e cerebrais.
25

Apathy and impulsivity in frontotemporal lobar degeneration syndromes

Lansdall, Claire Jade January 2017 (has links)
There has been considerable progress in the clinical, pathological and genetic fractionation of frontotemporal lobar degeneration syndromes in recent years, driving the development of novel diagnostic criteria. However, phenotypic boundaries are not always distinct and syndromes converge with disease progression, limiting the insights available from traditional diagnostic classification. Alternative transdiagnostic approaches may provide novel insights into the neurobiological underpinnings of symptom commonalities across the frontotemporal lobar degeneration spectrum. In this thesis, I illustrate the use of transdiagnostic methods to investigate apathy and impulsivity. These two multifaceted constructs are observed across all frontotemporal lobar degeneration syndromes, including frontotemporal dementia, progressive supranuclear palsy and corticobasal syndrome. They cause substantial patient morbidity and carer distress, often coexist and are undertreated. Using data from the Pick’s disease and Progressive supranuclear palsy Prevalence and INcidence (PiPPIN) Study, I examine the frequency, characteristics and components of apathy and impulsivity across the frontotemporal lobar degeneration spectrum. A principal component analysis of the neuropsychological data identified eight distinct components of apathy and impulsivity, separating patient ratings, carer ratings and behavioural tasks. Apathy and impulsivity measures were positively correlated, frequently loading onto the same components and providing evidence of their overlap. The data confirmed that apathy and impulsivity are common across the spectrum of frontotemporal lobar degeneration syndromes. Voxel based morphometry revealed distinct neural correlates for the components of apathy and impulsivity. Patient ratings correlated with white matter changes in the corticospinal tracts, which may reflect retained insight into their physical impairments. Carer ratings correlated with grey and white matter changes in frontostriatal, frontotemporal and brainstem systems, which have previously been implicated in motivation, arousal and goal directed behaviour. Response inhibition deficits on behavioural tasks correlated with focal frontal cortical atrophy in areas implicated in goal-directed behaviour and cognitive control. Diffusion tensor imaging was highly sensitive to the white matter changes underlying apathy and impulsivity in frontotemporal lobar degeneration syndromes. Diffusion tensor imaging findings were largely consistent with voxel-based morphometry, with carer ratings reflecting widespread changes while objective measures showed changes in focal, task-specific brain regions. White matter abnormalities often extended beyond observed grey matter changes, providing supportive evidence that white matter dysfunction represents a core pathophysiology in frontotemporal lobar degeneration. Apathy was a significant predictor of death within two and a half years from assessment, consistent with studies linking apathy to poor outcomes. The prognostic importance of apathy warrants more accurate measurement tools to facilitate clinical trials. Although causality remains unclear, the influence of apathy on survival suggests effective symptomatic treatments may also prove disease-modifying. These findings have several implications. First, clinical studies for apathy/impulsivity in frontotemporal lobar degeneration syndromes should target patients who present with these symptoms, irrespective of their diagnostic category. Second, data-driven approaches can inform the choice of assessment tools for clinical trials, and their link to neural drivers of apathy and impulsivity. Third, the components and their neural correlates provide a principled means to measure (and interpret) the effects of novel treatments in the context of frontotemporal lobar degeneration.
26

A longitudinal study of brain structure in the early stages of schizophrenia

Whitford, Thomas James January 2007 (has links)
Doctor of Philosophy (PhD) / Schizophrenia is a severe mental illness that affects approximately 1% of the population worldwide, and which typically has a devastating effect on the lives of its sufferers. The characteristic symptoms of the disease include hallucinations, delusions, disorganized thought and reduced emotional expression. While many of the early theories of schizophrenia focused on its psychosocial foundations, more recent theories have focused on the neurobiological underpinnings of the disease. This thesis has four primary aims: 1) to use magnetic resonance imaging (MRI) to identify the structural brain abnormalities present in patients suffering from their first episode of schizophrenia (FES), 2) to elucidate whether these abnormalities were static or progressive over the first 2-3 years of patients’ illness, 3) to identify the relationship between these neuroanatomical abnormalities and patients’ clinical profile, and 4) to identify the normative relationship between longitudinal changes in neuroanatomy and electrophysiology in healthy participants, and to compare this to the relationship observed between these two indices in patients with FES. The aim of Chapter 2 was to use MRI to identify the neuroanatomical changes that occur over adolescence in healthy participants, and to identify the normative relationship between the neuroanatomical changes and electrophysiological changes associated with healthy periadolescent brain maturation. MRI and electroencephalographic (EEG) scans were acquired from 138 healthy participants between the ages of 10 and 30 years. The MRI scans were segmented into grey matter (GM) and white matter (WM) images, before being parcellated into the frontal, temporal, parietal and occipital lobes. Absolute EEG power was calculated for the slow-wave, alpha and beta frequency bands, for the corresponding cortical regions. The age-related changes in regional tissue volumes and regional EEG power were inferred with a regression model. The results indicated that the healthy participants experienced accelerated GM loss, EEG power loss and WM gain in the frontal and parietal lobes between the ages of 10 and 20 years, which decelerated between the ages of 20 and 30 years. A linear relationship was also observed between the maturational changes in regional GM volumes and EEG power in the frontal and parietal lobes. These results indicate that the periadolescent period is a time of great structural and electrophysiological change in the healthy human brain. The aim of Chapter 3 was to identify the GM abnormalities present in patients with FES, both at the time of their first presentation to mental health services (baseline), and over the first 2-3 years of their illness (follow-up). MRI scans were acquired from 41 patients with FES at baseline, and 47 matched healthy control subjects. Of these participants, 25 FES patients and 26 controls returned 2-3 years later for a follow-up scan. The analysis technique of voxel-based morphometry (VBM) was used in conjunction with the Statistical Parametric Mapping (SPM) software package in order to identify the regions of GM difference between the groups at baseline. The related analysis technique of tensor-based morphometry (TBM) was used to identify subjects’ longitudinal GM change over the follow-up interval. Relative to the healthy controls, the FES patients were observed to exhibit widespread GM reductions in the frontal, parietal and temporal cortices and cerebellum at baseline, as well as more circumscribed regions of GM increase, particularly in the occipital lobe. Furthermore, the FES patients lost considerably more GM over the follow-up interval than the controls, particularly in the parietal and temporal cortices. These results indicate that patients with FES exhibit significant structural brain abnormalities very early in the course of their illness, and that these abnormalities progress over the first few years of their illness. Chapter 4 employed the same methodology to investigate the white matter abnormalities exhibited by the FES subjects relative to the controls, both at baseline and over the follow-up interval. Compared to controls, the FES patients exhibited volumetric WM deficits in the frontal and temporal lobes at baseline, as well as volumetric increases at the fronto-parietal junction bilaterally. Furthermore, the FES patients lost considerably more WM over the follow-up interval than did the controls in the middle and inferior temporal cortex bilaterally. While there is substantial evidence indicating that abnormalities in the maturational processes of myelination play a significant role in the development of WM abnormalities in FES, the observed longitudinal reductions in WM were consistent with the death of a select population of temporal lobe neurons over the follow-up interval. The aim of Chapter 5 was to investigate the clinical correlates of the GM abnormalities exhibited by the FES patients at baseline. The volumes of four distinct cerebral regions where 31 patients with FES exhibited reduced GM volumes relative to 30 matched controls were calculated and correlated with patients’ scores on three primary symptom dimensions: Disorganization, Reality Distortion and Psychomotor Poverty. The results indicated that the greater the degree of atrophy exhibited by the FES patients in three of these four ‘regions-of-reduction’, the less severe their degree of Reality Distortion. These results suggest that an excessive amount of GM atrophy may in fact preclude the formation of hallucinations or highly systematized delusions in patients with FES. The aim of Chapter 6 was to identify the relationship between the longitudinal changes in brain structure and brain electrophysiology exhibited by 19 FES patients over the first 2-3 years of their illness, and to compare it to the normative relationship between the two indices reported in Chapter 2. The methodology employed for the parcellation of the MRI and EEG data was identical to Chapter 2. The results indicated that, in contrast to the healthy controls, the longitudinal reduction in GM volume exhibited by the FES patients was not associated with a corresponding reduction in EEG power in any brain lobe. In contrast, EEG power was observed to be maintained or even to increase over the follow-up interval in these patients. These results were consistent with the FES patients experiencing an abnormal elevation of neural synchrony. Such an abnormality in neural synchrony could potentially form the basis of the dysfunctional neural connectivity that has been widely proposed to underlie the functional deficits present in patients with schizophrenia. The primary aim of Chapter 7 was to assimilate the findings from the preceding empirical chapters with the theoretical framework provided in the literature, into an integrated and testable model of schizophrenia. The model emphasized dysfunctions in brain maturation, specifically in the normative processes of synaptic ‘pruning’ and axonal myelination, as playing a key role in the development of disintegrated neural activity and the subsequent onset of schizophrenic symptoms. The model concluded with the novel proposal that disintegrated neural activity arises from abnormal elevations in the synchrony of synaptic activity in patients with first-episode schizophrenia.
27

The thalamus in Parkinson's disease: a multimodal investigation of thalamic involvement in cognitive impairment

Borlase, Nadia Miree January 2013 (has links)
Parkinson’s disease patients present with the highest risk of dementia development. The thalamus, integral to several functions and behaviours is involved in the pathophysiology of Parkinson’s disease. The aim of this thesis was to determine if anatomical abnormalities in the thalamus are associated with the development of dementia in Parkinson’s disease. We examined the thalamus using macro and microstructural techniques and the white matter pathways that connect the thalamus with areas of the surrounding cortex using diffusion tensor imaging (DTI) based tractography. T1-weighted magnetic resonance and DT images were collected in 56 Parkinson’s disease patients with no cognitive impairment, 19 patients with mild cognitive impairment, 17 patients with dementia and 25 healthy individuals who acted as control subjects. An established automated segmentation procedure (FIRST FSL) was used to delineate the thalamus and a modified k-means clustering algorithm applied to segment the thalamus into clusters assumed to represent thalamic nuclei. Fibre tracts were determined using DTI probabilistic tracking methods available in FIRST. Microstructural integrity was quantified by fractional anisotropy and mean diffusivity (MD) DTI measures. Results show that microstructural measures of thalamic integrity are more sensitive to cognitive dysfunction in PD than macrostructural measures. For the first time we showed a progressive worsening of cellular integrity (MD) in the groups who had greater levels of cognitive dysfunction. Thalamic degeneration was regionally specific and most advanced in the limbic thalamic nuclei which influenced executive function and attention, areas of cognition that are known to be affected in the earliest stages of PD. The integrity of the fibre tracts corresponding to these thalamic regions was also compromised. Degeneration of fibre tracts was most evident in the dementia group, indicating that they may be more protected against Lewy pathology than the nuclei of the thalamus. Our findings confirm previous histological, animal and lesion studies and provide a reliable estimate of cortical degeneration in PD that can be applied non-invasively and in vivo. A longitudinal study is needed to monitor the progression of cognitive decline in PD but we have provided the basis for further investigation into the predictive validity of thalamic degeneration for cognitive dysfunction. In the future, the microstructural changes of the thalamus could be used as biomarkers for the identification of individuals with a higher risk for dementia development and for the longitudinal monitoring of any interventions into cognitive decline.
28

The Neural Correlates of Auditory Processing in Adults and Children who Stutter

Beal, Deryk Scott 05 August 2010 (has links)
This dissertation is comprised of four studies investigating the hypothesis that adults and children who stutter differ from their same-age fluent peers in the neuroanatomy and neurophysiology underlying auditory speech processing. It has been consistently reported that adults who stutter demonstrate unique functional neural activation patterns during speech production, including reduced auditory activation, relative to nonstutterers. The extent to which these functional differences are accompanied by abnormal morphology of the brain in stutterers is unclear. The first study in this dissertation examined the neuroanatomical differences in speech-related cortex between adults who do and do not stutter using magnetic resonance imaging and voxel-based morphometry analyses. Adults who stutter were found to have localized grey matter volume increases in auditory and motor speech related cortex. The second study extended this line of research to children who stutter, who were found to have localized grey matter volume decreases in motor speech related cortex. Together, these studies suggest an abnormal trajectory of regional grey matter development in motor speech cortex of people who stutter. The last two studies investigated the mechanism underlying the repeated findings of reduced auditory activation during speech in people who stutter in more detail. Magnetoencephalography was used to investigate the hypothesis that people who stutter have increased speech induced suppression of early evoked auditory responses. Adults and children who stutter demonstrated typical levels of speech induced suppression relative to fluent peers. However, adults and children who stutter showed differences from peers in the timing of cortical auditory responses. Taken together, the studies demonstrate structural and functional abnormalities in brain regions related to auditory processing and point to the possibility that people who stutter have difficulty forming the neural representations of speech sounds necessary for fluent speech production.
29

A longitudinal study of brain structure in the early stages of schizophrenia

Whitford, Thomas James January 2007 (has links)
Doctor of Philosophy (PhD) / Schizophrenia is a severe mental illness that affects approximately 1% of the population worldwide, and which typically has a devastating effect on the lives of its sufferers. The characteristic symptoms of the disease include hallucinations, delusions, disorganized thought and reduced emotional expression. While many of the early theories of schizophrenia focused on its psychosocial foundations, more recent theories have focused on the neurobiological underpinnings of the disease. This thesis has four primary aims: 1) to use magnetic resonance imaging (MRI) to identify the structural brain abnormalities present in patients suffering from their first episode of schizophrenia (FES), 2) to elucidate whether these abnormalities were static or progressive over the first 2-3 years of patients’ illness, 3) to identify the relationship between these neuroanatomical abnormalities and patients’ clinical profile, and 4) to identify the normative relationship between longitudinal changes in neuroanatomy and electrophysiology in healthy participants, and to compare this to the relationship observed between these two indices in patients with FES. The aim of Chapter 2 was to use MRI to identify the neuroanatomical changes that occur over adolescence in healthy participants, and to identify the normative relationship between the neuroanatomical changes and electrophysiological changes associated with healthy periadolescent brain maturation. MRI and electroencephalographic (EEG) scans were acquired from 138 healthy participants between the ages of 10 and 30 years. The MRI scans were segmented into grey matter (GM) and white matter (WM) images, before being parcellated into the frontal, temporal, parietal and occipital lobes. Absolute EEG power was calculated for the slow-wave, alpha and beta frequency bands, for the corresponding cortical regions. The age-related changes in regional tissue volumes and regional EEG power were inferred with a regression model. The results indicated that the healthy participants experienced accelerated GM loss, EEG power loss and WM gain in the frontal and parietal lobes between the ages of 10 and 20 years, which decelerated between the ages of 20 and 30 years. A linear relationship was also observed between the maturational changes in regional GM volumes and EEG power in the frontal and parietal lobes. These results indicate that the periadolescent period is a time of great structural and electrophysiological change in the healthy human brain. The aim of Chapter 3 was to identify the GM abnormalities present in patients with FES, both at the time of their first presentation to mental health services (baseline), and over the first 2-3 years of their illness (follow-up). MRI scans were acquired from 41 patients with FES at baseline, and 47 matched healthy control subjects. Of these participants, 25 FES patients and 26 controls returned 2-3 years later for a follow-up scan. The analysis technique of voxel-based morphometry (VBM) was used in conjunction with the Statistical Parametric Mapping (SPM) software package in order to identify the regions of GM difference between the groups at baseline. The related analysis technique of tensor-based morphometry (TBM) was used to identify subjects’ longitudinal GM change over the follow-up interval. Relative to the healthy controls, the FES patients were observed to exhibit widespread GM reductions in the frontal, parietal and temporal cortices and cerebellum at baseline, as well as more circumscribed regions of GM increase, particularly in the occipital lobe. Furthermore, the FES patients lost considerably more GM over the follow-up interval than the controls, particularly in the parietal and temporal cortices. These results indicate that patients with FES exhibit significant structural brain abnormalities very early in the course of their illness, and that these abnormalities progress over the first few years of their illness. Chapter 4 employed the same methodology to investigate the white matter abnormalities exhibited by the FES subjects relative to the controls, both at baseline and over the follow-up interval. Compared to controls, the FES patients exhibited volumetric WM deficits in the frontal and temporal lobes at baseline, as well as volumetric increases at the fronto-parietal junction bilaterally. Furthermore, the FES patients lost considerably more WM over the follow-up interval than did the controls in the middle and inferior temporal cortex bilaterally. While there is substantial evidence indicating that abnormalities in the maturational processes of myelination play a significant role in the development of WM abnormalities in FES, the observed longitudinal reductions in WM were consistent with the death of a select population of temporal lobe neurons over the follow-up interval. The aim of Chapter 5 was to investigate the clinical correlates of the GM abnormalities exhibited by the FES patients at baseline. The volumes of four distinct cerebral regions where 31 patients with FES exhibited reduced GM volumes relative to 30 matched controls were calculated and correlated with patients’ scores on three primary symptom dimensions: Disorganization, Reality Distortion and Psychomotor Poverty. The results indicated that the greater the degree of atrophy exhibited by the FES patients in three of these four ‘regions-of-reduction’, the less severe their degree of Reality Distortion. These results suggest that an excessive amount of GM atrophy may in fact preclude the formation of hallucinations or highly systematized delusions in patients with FES. The aim of Chapter 6 was to identify the relationship between the longitudinal changes in brain structure and brain electrophysiology exhibited by 19 FES patients over the first 2-3 years of their illness, and to compare it to the normative relationship between the two indices reported in Chapter 2. The methodology employed for the parcellation of the MRI and EEG data was identical to Chapter 2. The results indicated that, in contrast to the healthy controls, the longitudinal reduction in GM volume exhibited by the FES patients was not associated with a corresponding reduction in EEG power in any brain lobe. In contrast, EEG power was observed to be maintained or even to increase over the follow-up interval in these patients. These results were consistent with the FES patients experiencing an abnormal elevation of neural synchrony. Such an abnormality in neural synchrony could potentially form the basis of the dysfunctional neural connectivity that has been widely proposed to underlie the functional deficits present in patients with schizophrenia. The primary aim of Chapter 7 was to assimilate the findings from the preceding empirical chapters with the theoretical framework provided in the literature, into an integrated and testable model of schizophrenia. The model emphasized dysfunctions in brain maturation, specifically in the normative processes of synaptic ‘pruning’ and axonal myelination, as playing a key role in the development of disintegrated neural activity and the subsequent onset of schizophrenic symptoms. The model concluded with the novel proposal that disintegrated neural activity arises from abnormal elevations in the synchrony of synaptic activity in patients with first-episode schizophrenia.
30

Étude des mécanismes neurophysiologiques de l'instabilité posturale dans la sclérose latérale amyotrophique à partir d'un modèle biomécanique de l'initiation de la marche / Neurophysiological mechanisms study of postural instability in amyotrophic lateral sclerosis from a biomechanical model of gait initiation

Feron, Maryse 16 December 2016 (has links)
L'instabilité posturale est souvent observée chez les patients atteints de la sclérose latérale amyotrophique (SLA). Cependant, les mécanismes neuronaux impliqués dans cette instabilité posturale demeurent largement inconnus. Comparés aux patients SLA sans instabilité postural, les patients atteints de SLA avec instabilité posturale présentent des APA altérés avec un déplacement postérieur du centre de pression du pied diminué (CP) et une durée des APA augmentée, la longueur et la vitesse du premier pas sont réduites, enfin, le contrôle postural dynamique est déficitaire avec une diminution spectaculaire de l'indice de freinage. A l'inverse, nous n’observons aucune modification des phases d’anticipation et d’exécution du pas chez les patients SLA sans instabilité posturale comparés aux sujets témoins. Le faible recul du CP au cours de la phase d’anticipation est corrélé positivement de façon significative à l’atrophie de la substance grise du PCC, SPL, PPN et le CN ; et la durée augmentée de la phase d’anticipation est corrélée négativement de façon significative à l’atrophie de la matière grise du AMS et du cervelet. Les réductions de la vitesse et de la longueur du premier pas sont liées de façon significative à l’atrophie de la matière grise dans le PMC, le PPN et le vermis cérébelleux, enfin, l’absence de freinage actif est corrélée à une diminution du volume de la matière grise du CUN. Ces résultats suggèrent que l'instabilité posturale des patients atteints de SLA est causée, au moins en partie, par le dysfonctionnement des régions et des réseaux connus pour être impliqués dans l'initiation de la marche et dans le contrôle de l’équilibre. / Postural instability is frequently reported in Amyotrophic Lateral Sclerosis (SLA) patients. However, the neural mechanisms that contribute to postural instability in SLA patients remain largely unknown. In comparison to both SLA patients without postural instability and controls, SLA patients with postural instability presented an altered anticipatory postural adjustment (APA) phase with a decreased posterior displacement of the center of foot pressure (CP) and a increased APA duration, decreased length and velocity of the first step and deficit of the dynamic postural control with a dramatic decreased braking index. Conversely, the gait initiation was not significantly modified in SLA patients without postural instability in comparison to controls. The reduced posterior CP displacement during the APA was significantly related to reduced grey matter volume of the left PCC, left SPL, right PPN and caudate nucleus, and the increased APA duration to the reduced grey matter volume of the left AMS and right cerebellum. The reduced velocity of the first step was significantly related to a decreased grey matter volume within the left PMC, right PPN and cerebellar vermis and the reduced braking index to decreased grey matter volume of the right CUN. These results suggest that postural instability of SLA patients result, at least partly, from dysfunction of brain regions and networks known to be involved in gait initiation and balance controls in human.

Page generated in 0.0763 seconds