• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 9
  • 8
  • Tagged with
  • 32
  • 31
  • 24
  • 20
  • 16
  • 16
  • 16
  • 12
  • 12
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimentelle und theoretische Untersuchungen zur gasdruckabhängigen Wärmeleitfähigkeit von porösen Materialien / Experimental and theoretical investigations on the gas-pressure dependent thermal conductivity of porous materials

Swimm, Katrin January 2017 (has links) (PDF)
Als Wärmedämmstoffe werden üblicherweise makroporöse Stoffsysteme wie Schäume, Pul-verschüttungen, Faservliese und – wolle eingesetzt. Zusätzlich finden mikro- und mesoporöse Dämmstoffe wie Aerogele Anwendung. Um effiziente Wärmedämmstoffe entwickeln zu können, muss der Gesamtwärmetransport in porösen Materialien verstanden werden. Die ein-zelnen Wärmetransport-Mechanismen Festkörperwärmeleitung, Gaswärmeleitung und Wärme-strahlung können zuverlässig analytisch beschrieben werden. Bei manchen porösen Materialien liefert jedoch auch eine Wechselwirkung zwischen den verschiedenen Wärmetransport-Mechanismen, d.h. die Kopplung von Festkörper- und Gaswärmeleitung, einen hohen Beitrag zur Gesamtwärmeleitfähigkeit. Wie hoch dieser Kopplungseffekt bei einer bestimmten Probe ausfällt, kann bisher schwer abgeschätzt werden. Um den Kopplungseffekt von Festkörper- und Gaswärmeleitung besser zu verstehen, sind sowohl experimentelle als auch theoretische Untersuchungen an verschiedenen porösen Stoffsystemen erforderlich. Zusätzlich kann ein zuverlässiges theoretisches Modell dazu beitragen, die mittlere Porengröße von porösen Mate-rialien zerstörungsfrei anhand von gasdruckabhängigen Wärmeleitfähigkeitsmessungen zu bestimmen. Als Modellsystem für die experimentellen Untersuchungen wurde der hochporöse Feststoff Aerogel verwendet, da seine strukturellen Eigenschaften wie Porengröße und Dichte während der Synthese gut eingestellt werden können. Es wurden Resorcin-Formaldehyd-Aerogele mit mittleren Porengrößen von etwa 600 nm, 1 µm und 8 µm sowie daraus mittels Pyrolyse abge-leitete Kohlenstoff-Aerogele synthetisiert und jeweils hinsichtlich ihrer Struktur und Wärme-leitfähigkeiten experimentell charakterisiert. Die Gesamtwärmeleitfähigkeiten dieser Aerogele wurden für verschiedene Gasatmosphären (Kohlenstoffdioxid, Argon, Stickstoff und Helium) in Abhängigkeit vom Gasdruck durch das Hitzdraht-Verfahren bestimmt. Hierfür wurde der Messbereich der Hitzdraht-Apparatur des ZAE Bayern mittels einer Druckzelle auf 10 MPa erweitert. Die Messergebnisse zeigen, dass bei allen Aerogel-Proben Festkörper- und Gaswär-meleitung einen deutlichen Kopplungsbeitrag liefern: Die gemessenen gasdruckabhängigen Wärmeleitfähigkeiten sind um Faktor 1,3 bis 3,3 höher als die entsprechenden reinen Gas-wärmeleitfähigkeiten. Die jeweilige Höhe hängt sowohl vom verwendeten Gas (Gaswärmeleitfähigkeit) als auch vom Aerogeltyp (Festkörperwärmeleitfähigkeit und Festkörperstruktur) ab. Ein stark vernetzter Festkörper verursacht beispielsweise einen niedrigeren Kopplungsbei-trag als ein weniger stark vernetzter Festkörper. Andererseits wurde die gasdruckabhängige Wärmeleitfähigkeit von Melaminharzschaum – einem flexiblen, offenporigen und hochporösen Material – in einer evakuierbaren Zwei-Plattenapparatur unter Stickstoff-Atmosphäre bestimmt. Das Material zeichnet sich dadurch aus, dass die Addition der Einzelwärmeleitfähigkeiten gut erfüllt ist, d.h. kein Kopplungsef-fekt auftritt. Allerdings konnte gezeigt werden, dass die gestauchte und damit unregelmäßige Struktur von Melaminharzschaum die Kopplung von Festkörper- und Gaswärmeleitung deut-lich begünstigt. Je stärker die Melaminharzschaumprobe komprimiert wird, umso stärker fällt der Kopplungseffekt aus. Bei einer Kompression um 84 % ist beispielsweise die gemessene gasdruckabhängige Wärmeleitfähigkeit bei 0,1 MPa um ca. 17 % gegenüber der effektiven Wärmeleitfähigkeit von freiem Stickstoff erhöht. Die experimentellen Untersuchungen wurden durch theoretische Betrachtungen ergänzt. Zum einen wurde die Kopplung von Festkörper- und Gaswärmeleitung anhand einer Serienschal-tung der thermischen Widerstände von Festkörper- und Gasphase dargestellt, um die Abhän-gigkeit von verschiedenen Parametern zu untersuchen. Dadurch konnte gezeigt werden, dass der Kopplungsterm stets von den Verhältnissen aus Festkörper- und Gaswärmeleitfähigkeit sowie aus den geometrischen Parametern beider Phasen abhängt. Des Weiteren wurden mit dem Computerprogramm HEAT2 Finite-Differenzen-Simulationen an Modellstrukturen durchgeführt, die für poröse Stoffsysteme, insbesondere Aerogel, charakteristisch sind (Stege, Hälse, Windungen und tote Enden). Die simulierten gasdruckabhängigen Wärmeleitfähigkeiten zeigen deutlich, dass die Festkörperstruktur mit der geringsten Vernetzung, d.h. das tote Ende, am meisten zur Kopplung von Festkörper- und Gaswärmeleitung beiträgt. Dies korre-liert mit den experimentellen Ergebnissen. Darüber hinaus kann man erkennen, dass die Ge-samtwärmeleitfähigkeit eines schlecht vernetzten porösen Systems, wo also ein hoher Kopp-lungseffekt (Serienschaltung) auftritt, niemals größer wird als die eines gut vernetzten Sys-tems mit gleicher Porosität, wo hauptsächlich paralleler Wärmetransport durch beide Phasen stattfindet. Schließlich wurden drei Modelle entwickelt bzw. modifiziert, um die gasdruckabhängige Wärmeleitfähigkeit von porösen Stoffsystemen theoretisch beschreiben zu können. Zunächst wurde ein für Kugelschüttungen entwickeltes Modell für Aerogel angepasst, d.h. Kopplung von Festkörper- und Gaswärmeleitung wurde nur in den Lücken zwischen zwei benachbarten Partikeln berücksichtigt. Ein Vergleich mit den Messkurven zeigt, dass der ermittelte Kopplungsterm zu gering ausfällt. Daher wurde ein bereits existierendes Aerogelmodell mit kubischer Einheitszelle, welches zusätzlich Kopplung zwischen den einzelnen Partikelsträngen beinhaltet, verbessert. Auch dieses Modell liefert keine zufriedenstellende Übereinstimmung mit den Messwerten, denn der Kopplungsbeitrag wird immer noch unterschätzt. Das liegt daran, dass die gewählte regelmäßige kubische Struktur für Aerogel zu ungenau ist. So geht bei der Berechnung des Kopplungsterms der bereits erwähnte hohe Beitrag durch tote Enden (und auch Windungen) verloren. Erfahrungsgemäß können jedoch alle für Aerogel erhaltenen gasdruckabhängigen Messkurven mit dem sogenannten Skalierungsmodell relativ gut beschrieben werden. Das entspricht dem Knudsen-Modell für reine Gaswärmeleitung, welches mit einem konstanten Faktor skaliert wird. Die Anwendung dieses einfachen Modells auf die Messdaten hat gezeigt, dass die Akkommodationskoeffizienten von Helium in Aerogel deut-lich höher sind als die Literaturwerte (ca. 0,3 auf Metalloberflächen): In den vermessenen RF- und Kohlenstoff-Aerogelen lassen sich Akkommodationskoeffizienten nahe 1 für Helium ab-leiten. Darüber hinaus ist das Skalierungsmodell gut geeignet, die mittleren Porengrößen poröser Materialien zuverlässig aus gasdruckabhängig gemessenen Wärmeleitfähigkeitskurven zu bestimmen. Dies stellt somit eine unkomplizierte und zerstörungsfreie Charakterisierungsmethode dar. / Common thermal insulation materials are macro porous material systems such as foams, powders, fleeces and fibers. Additionally, micro and meso porous thermal insulations such as aerogels are employed. In order to further optimize thermal insulation materials, the total heat transfer in porous materials has to be quantified. The individual heat transfer mechanisms solid thermal conduction, gaseous thermal conduction and thermal radiation can be described reliably by analytic models. But for some porous materials an interaction of the different heat transfer mechanisms, i.e. coupling of solid and gaseous thermal conduction, occurs and can contribute significantly to the total effective thermal conductivity. So far, it is hard to predict the amount of this coupling contribution for a certain sample. For a better understanding of the coupling effect of solid and gaesous thermal conduction, both experimental and theoretical investigations on different porous material systems are required. Additionally, a reliable theoretical model can help to determine the mean pore size of porous materials in a nonde-structive way from gas-pressure dependent thermal conductivity measurements. Highly porous aerogel was used as model system for the experimental investigations, because its structural properties such as pore size and density can be adapted relatively well during synthesis. Resorcinol formaldehyde aerogels with mean pore sizes of about 600 nm, 1 µm and 8 µm as well as corresponding carbon aerogels obtained by pyrolysis were synthesized and experimentally characterized regarding their structural and thermal properties. Their total ef-fective thermal conductivities were determined by means of hot-wire measurements in different gas atmospheres (carbon dioxide, argon, nitrogen and helium) as a function of gas pressure. For this purpose, the measurement range of the hot-wire apparatus at ZAE Bayern was extended up to 10 MPa using a pressure chamber. The measurement results show that in all aerogel samples an obvious amount of coupling between solid and gaseous thermal conduction occurs: The gas-pressure dependent thermal contributions measured are by a factor of 1.3 to 3.3 higher than the corresponding pure gaseous thermal conductivities, depending on the pore gas (gaseous thermal conductivity) and the kind of aerogel (solid thermal conductivity and solid backbone structure). For example, a strongly connected solid phase causes a lower cou-pling contribution than a loosely connected one. On the other hand, the gas-pressure dependent thermal conductivity of melamine resin foam – a flexible and highly porous material with open pores – was determined with an evacuable guarded hot-plate apparatus in a nitrogen atmosphere. For this kind of material the simple ad-dition of the individual thermal conductivities is observed, i.e. no coupling occurs for standard conditions. However, if compressed, the structure of melamine resin foam becomes irregular and coupling of solid and gaseous thermal conduction occurs. The more the melamine resin foam sample is compressed, the stronger is the coupling effect. For example, the measured gas-pressure dependent thermal coductivity belonging to a compression by 84 % exceeds the effective thermal conductivity of free nitrogen by about 17 % at 0.1 MPa. The experimental investigations were supplemented by theoretical considerations. First of all, coupling of solid and gaseous thermal conduction was described by means of a series connec-tion of the thermal resistances of the solid and the gas phase, in order to examine the depend-ence on different parameters. This investigation shows, that the coupling term depends on the ratios of solid and gaseous thermal conductivity as well as of the geometrical parameters in both phases. Furthermore, with the computer program HEAT2, finite difference calculations were performed for model structures that are characteristic of porous material systems, espe-cially aerogel (struts, necks, torsions and dead ends). The simulated gas-pressure dependent thermal conductivity data show clearly, that the solid backbone structure with the weakest connectivity, i.e. the dead end, causes the highest amount of coupling between solid and gas-eous thermal conduction. This agrees with the experimental results. Moreover, it was found that the total effective thermal conductivity of a weakly connected porous system, where a high coupling effect (serial connection) occurs, never becomes larger than that of a well-connected system with the same porosity, where the heat transfer in both phases happens mostly in parallel. Finally, three models were developed or rather modified, in order to be able to describe the gas-pressure dependent thermal conductivity of porous material systems theoretically. At first, a model originally developed for packed beds of spherical particles was adapted to aerogel, i.e. coupling of solid and gaseous thermal conduction was only taken into account for the gaps between two adjacent particles. Comparison with the experimental curves shows that the coupling term calculated is too low. Therefore, an already existing aerogel model with a cubic unit cell, which includes additional coupling between the individual particle strings, was improved. The agreement of this model with the measurement curves is also very poor, because the cou-pling contribution is still underrated. This is due to the chosen regular cubic structure being too imprecise for irregularly formed aerogel backbones. Thus, when calculating the coupling term, the above-mentioned high contribution due to dead ends (and also torsions) gets lost. Empiri-cally however, all gas-pressure dependent measurement curves received for aerogel, can be described relatively well by the so-called scaling model. This is Knudsen’s model for pure gaseous thermal conduction scaled with a constant factor. The application of this simple model to the experimental data shows that the accommodation coefficients of helium in aerogel are significantly higher than the literature values (around 0.3 on metal surfaces): Within the RF and carbon aerogels investigated accommodation coefficients close to 1 can be derived for helium. Moreover, the scaling model is suitable for a reliable determination of the mean pore sizes of porous materials from gas-pressure dependent thermal conductivity data. Therefore, a straightforward and nondestructive characterization method was found.
2

Strahlungseffekte bei instationären Heizdrahtmessungen an porösen Wärmedämmstoffen

Tran, Le-Thanh-Son 08 December 2009 (has links) (PDF)
Die Integral-Differentialgleichung zur Beschreibung des Energietransports der gekoppelten Strahlung/Leitung in einem grauen, absorbierenden und emittierenden, von zwei koaxial zylindrischen Oberflächen begrenzten Medium wird mit der Methode der Finiten Differenzen numerisch gelöst, um Strahlungseffekte bei instationären Heizdrahtmessungen an porösen Wärmedämmstoffen theoretisch zu analysieren. Der Einfluss des Extinktionskoeffizienten des Probenmediums, der Emissivität des Heizdrahtes, der Messtemperatur, der Heizleistung und des thermischen Kontaktwiderstandes wird untersucht. Aufgrund der Berechnungsergebnisse wird die effektive Wärmeleitfähigkeit poröser Wärmedämmstoffe unterbestimmt, wenn deren Extinktionskoeffizienten klein sind. Die Untergrenze des erlaubten Extinktionsbereiches verschiebt sich zu größeren Werten mit zunehmender Messtemperatur. Der thermische Kontaktwiderstand bedeutet eine Verfälschungsgefahr von Messergebnissen, insbesondere wenn der Heizdraht stark emittiert und die Probenoberfläche reflektiert.
3

Wärmeleitung durch Schlackenschichten

Chebykin, Dmitry 06 September 2023 (has links)
The study demonstrates the systematic investigation of thermophysical properties of synthetic slags and commercial mold fluxes in a wide temperature range. Focal points of the work are (i) the development and the construction of the transient hot-wire method for the thermal conductivity measurement of solid and molten slags and (ii) the investigation of the thermal conductivity of all layers of casting powders being in the mold. The work includes viscosity, density and surface tension measurements as well as the investigation of characteristic temperatures. The crystallization behavior of mold fluxes was characterized using a SHTT/DHTT (single hot and double hot thermocouple technique). The study discusses the temperature dependence, the influence of the basicity and the non-bridging oxygen per tetrahedra (NBO/T) on the slag properties. The novelty of the work is the systematic characterization of properties of two commercial mold fluxes and the thermal conductivity measurement in the glass transition temperature range.
4

Experimentelle Bestimmung der effektiven Wärmeleitfähigkeit schüttfähiger Wärmedämmstoffe für thermische Energiespeicher

Mücke, Jan Markus 05 December 2019 (has links)
Im Rahmen dieser Arbeit erfolgte der Aufbau eines neuartigen Versuchsstandes zum praxisnahen Test von Wandaufbauten (VS-WA; Probendimension: 1,9 m x 1,9 m x 0,5 m). Mit dem VS sind praxisnahe Untersuchungen von Dämm- und Dichtstoffen sowie Wandsegmentmaterialien thermischer Energiespeicher in einer Einheit durchführbar. Aufgrund der drehbaren Lagerung des VS ist es möglich, vertikale (Wandbereich) und horizontale (Deckenbereich) Aufbauten zu untersuchen. Mit dem VS erfolgt eine experimentelle Bestimmung von effektiven Wärmeleitfähigkeiten zweier aussichtsreicher Wärmedämmstoffe (Polyurethan-Granulat und expandierte Polystyrol-Partikel). Die Untersuchungsergebnisse zeigen für den vertikalen Betrieb des VS eine erhöhte effektive Wärmeleitfähigkeit im Vergleich zu den Stoffwerten der Hersteller. Der Grund hierfür ist, basierend auf der Auswertung von Temperaturprofilen, ein signifikanter Anteil an freier Konvektion. Dies ist trotz niedriger Permeabilitäten der untersuchten Schüttgüter und demnach entgegen dem aktuellen Stand der Wissenschaft der Fall. Ohne den neuen VS mit den hier realisierten Maßen, wären diese Effekte nicht messbar gewesen (z. B. bei Untersuchungen mit Ein- oder Zwei-Platten-Apparaturen). Die Ergebnisse können dazu beitragen, erhöhte Wärmeverluste an realen Bauwerken zu erklären und zu vermeiden. / Within the context of this thesis, a new test rig for the practical testing of wall structures (VS-WA; sample size: 1.9 m x 1.9 m x 0.5 m) was set up. With the test rig, practical investigations of insulating and sealing materials as well as wall segment materials of thermal energy stores are possible in one unit. Since the test rig is pivoted it is also possible to examine vertical (wall area) and horizontal (ceiling area) structures. The present thesis deals with the experimental determination of the effective thermal conductivity of two promising thermal insulation materials (polyurethane granulate and expanded polystyrene particles). The test results show an increased effective thermal conductivity for the vertical orientation of the VS-WA compared to the material properties given by the manufacturers. The reason for this is, based on the evaluation of temperature profiles, a significant portion of free convection. This is the case despite low permeabilities of the bulk materials investigated and thus contrary to the current state of scientific knowledge. Without the new test rig with the dimensions realized here, the discovered effects could not have been observed (e.g. investigations with one- or two-plate apparatuses). The results can contribute to explain and avoid increased heat losses in real building structures.
5

Untersuchungen zum Sinterverhalten von Porzellan / Investigations on the sintering behaviour of porcelain

Dannert, Christian Alexander January 2006 (has links) (PDF)
Unter ökonomischen und ökologischen Zwängen geht der Trend in der Porzellanherstellung dahin, den Brennprozess immer weiter zu beschleunigen und damit die Brenndauer zu verkürzen. Die Aufheizrate beim Brand wird dazu zunehmend erhöht. In der Folge treten, durch fehlende Standfestigkeit des sinternden Scherbens bedingt, bleibende Verformungen auf. Außerdem führen große Dichtegradienten im Scherben zu Rissen, die sich beim Brand nicht mehr schließen. Eine bessere Kenntnis der Sinterphänomene während des Brandes trägt zur Lösung dieser Probleme bei. Deshalb wurden in dieser Arbeit Methoden der Sinteranalyse auf Porzellan angewandt und erweitert: die Aufstellung eines Kinetic Field, die Untersuchung der Temperaturleitfähigkeit und die Analyse des Verformungsverhaltens beim Brand. Die Untersuchungen fanden in einer umgebauten und erweiterten Thermo- Optischen Meßanlage (TOM) statt. In dieser Meßanlage können gleichzeitig die Schwindung und die Temperaturleitfähigkeit in-situ während der Sinterung gemessen werden. Um die industriellen Brennbedingungen von Porzellan möglichst genau in den Labormaßstab zu übertragen, wurde die TOM um den Betrieb unter wasserdampfhaltiger Brennatmosphäre erweitert. Zur Untersuchung des Verformungsverhaltens von Porzellan während der Sinterung in der TOM wurde weiterhin ein Aufbau entwickelt, der besonders den optischen Gegebenheiten in der Meßeinrichtung Rechnung trägt. Während der Sinterung kann die Probe mit einer definierten Kraft belastet und die resultierende Verformung optisch gemessen werden. In Versuchsreihen zum Porzellanbrand, bei denen Aufheizraten, Maximaltemperaturen, Belastungen und Atmosphären verändert wurden, wurden gleichzeitig Schwindung und Temperaturleitfähigkeit gemessen. Aus den Schwindungsdaten der unbelasteten Sinterungen wurde ein Kinetic Field von Porzellan erstellt. Es zeigt die Sintergeschwindigkeit in Abhängigkeit von der Temperatur und der Aufheizrate. Das Kinetic Field erlaubt, die Sintervorgänge von Porzellan abhängig von den Brennparametern vorherzusagen. Es ist somit ein wichtiges Werkzeug zur Optimierung von Brennvorgängen, da es den Schritt von arbeits- und kostenintensiven "Trial and Error"-Versuchen zu materialangepaßten theoretischen Optimierungen ermöglicht. Mittels Finite-Differenzen-Verfahren wurden die Dichtegradienten im Porzellanscherben während des Brandes berechnet. Diese Berechnung konnte erstmals gekoppelt, unter Berücksichtigung sowohl der Wärmeleitfähigkeits- als auch der Dichteentwicklung, erfolgen. Dichtegradienten begünstigen die Ausbildung von Rissen beim Brand. Die Berechnung der Dichtegradienten kann auf jedes beliebige Brennregime angewandt werden. So kann im Vorfeld der industriellen Umsetzung ein Brennprogramm auf minimale Dichtegradienten und geringe Rißneigung während des Brandes optimiert werden. Aus Verformungsmessungen wurde die Standfestigkeit von Porzellan während des Brandes bestimmt. Sie beeinflußt wesentlich die Verformung des Scherbens während des Brandes. Auch hier kann durch wenige Versuche im Labor die Verformung von Porzellan während des industriellen Brandes vorhergesagt werden. Dadurch wird die Optimierung auf geringste Verformung möglich. Bei der Untersuchung der Sintergeschwindigkeit des untersuchten Porzellans fallen zwei charakteristische Maxima auf, die in den Temperaturbereichen auftreten, in denen die Dichtegradienten im Scherben stark ausgebildet sind und in denen auch die Standfestigkeit gering ist. Diese Erscheinungen werden mit Sinterphänomenen der Flüssigphasensinterung in Verbindung gebracht. Sie resultieren aus mehreren, teils gegeneinander wirkenden und sich überlagernden Sintervorgängen. Beim Brand unter industrieller, feuchter Brennatmosphäre treten die einzelnen Sinterphänomene unabhängig von der Aufheizrate immer bei der gleichen Temperatur auf. Dieses Verhalten ist sehr ungewöhnlich und wurde bisher noch nicht beobachtet. Es kann dadurch erklärt werden, daß die feuchte Atmosphäre die Viskosität der glasbildenden Schmelzphase im Werkstück stark erniedrigt und in der Folge Gleichgewichtsphänomene der Sinterung geschwindigkeitsbestimmend werden. Aus den gesammelten Erkenntnissen wurden Hinweise zur optimierten Brennführung beim Brand des hier untersuchten Porzellans formuliert. Ziel war es, Produkte ohne Verformungen und Risse mit dem kürzestmöglichen Brennzyklus zu erhalten. Dazu sollte die Aufheizung möglichst schnell erfolgen, so daß Bereiche niedriger Festigkeit schnell durchfahren werden. Die obere Grenze der Aufheizgeschwindigkeit wird durch Temperatur- und Dichtegradienten im Werkstück bestimmt, die zu mechanischen Spannungen und damit zu Rissen führen können. Dieses Verhalten konnte rechnerisch simuliert werden. In Verbindung mit neuen Ofentechnologien ist es möglich, die Dauer des Porzellanglattbrandes auf deutlich unter vier Stunden zu verringern. / With raising economic and ecologic demands, the firing process during the manufacturing of porcelain is speeded up more and more. Heating rates are increased and the total firing time is reduced. As a result, due to lack of stability, deformation of the sintering porcelain body occurs. Additionally, large density gradients initiate cracks in the porcelain body. Increased knowledge of the sintering phenomena during porcelain firing is needed to solve these problems. Therefore, methods of sintering analysis were applied to porcelain and extended when needed: the kinetic field, in-situ thermal diffusivity measurements and the analysis of deformation behaviour during the sintering process. All measurements were carried out in a Thermo-Optical Measurement Device (TOM). With this laboratory installation, shrinkage and thermal diffusivity of a sample can be determined simultaneously and in-situ during sintering. To precisely transfer the industrial manufacturing conditions of porcelain to the laboratory, the TOM was upgraded to work with industrial gas atmospheres containing water vapour. Furthermore, a measurement setup for in-situ determination of the deformation behaviour in the TOM was developed. The sample is loaded with a well-defined weight during sintering and the resulting deformation is measured optically. In laboratory trials, the firing process of porcelain was simulated using different heating rates, maximum temperatures, loads and gas atmospheres. Sample shrinkage and thermal diffusivity were measured concurrently. The shrinkage data of unloaded samples was used to develop the kinetic field of porcelain. The kinetic field shows the sintering velocity as a function of temperature and heating rate. It allows the prediction of the sintering activity of porcelain during the firing process depending on the sintering parameters. Therefore, the kinetic field is a valuable tool for the optimisation of firing processes, as it may replace labour-intensive trial and error¨experiments by a material-adapted theoretical optimisation. Finite difference calculations were used to determine the density gradients in a porcelain body during sintering. Density gradients favour the formation of cracks during sintering. The calculations were carried out in a coupled way, incorporating the changes of both thermal diffusivity and density during the sintering process. Finite difference calculations can be applied to any sintering regime and allow to optimise a sintering process for minimised density gradients and crack formation in the run-up to the industrial implementation. Using deformation measurements, the stability of loaded porcelain during sintering was examined. The stability considerably determines the deformation of the porcelain body during firing. Only a small number of laboratory experiments allow the prediction of the deformation behaviour during industrial firing and allow the optimisation of the firing process with respect to minimised deformation. The examination of the sintering velocity of porcelain revealed two characteristic maxima. They coincide with the two temperature ranges where strong density gradients occur in the porcelain body and the deformation resistance is low. This is associated with liquid phase sintering phenomena. The effects result from several sintering processes that partly superimpose themselves and partly act against each other. When sintering under industrial atmosphere that contains water vapour, the specific sintering phenomena occur, irrespective of the heating rate, at identical temperatures. This behaviour is unusual and has not been observed before. It is explained by assuming that the water vapour-containing atmosphere drastically lowers the viscosity of the liquid phase in the porcelain body. Consequently, equilibrium phenomena become dominant for the velocity of sintering. All results were combined to propose an optimised firing regime for the porcelain that was examined. The aim was to produce porcelain bodies without deformations or cracks with the shortest possible firing cycle. To reach this aim, the initial heating rate should be as high as possible, so that the zones of small deformation resistance are quickly passed. The upper boundary of the initial heating rate is set by the developing temperature and density gradients, that induce mechanical strains and therefore cracks in the porcelain body. The whole complex behaviour was simulated. Together with new kiln technologies it is possible to reduce noticeably the firing time of porcelain to less than four hours.
6

Wärmeleitfähigkeit von hitzebeständigen und feuerfesten Dämmstoffen

Wulf, Rhena 08 December 2009 (has links) (PDF)
Wärmeleitfähigkeiten von Dämmstoffen, die mit verschiedenen Verfahren gemessen wurden, zeigen in vielen Fällen Differenzen, deren Ursachen bisher nicht eindeutig geklärt werden konnten. In der Arbeit werden die Ergebnisse der systematischen experimentellen Ermittlung der Wärmeleitfähigkeit von isotropen und anisotropen Dämmstoffen mit verschiedenen stationären und instationären Messverfahren im Temperaturbereich 20 – 1200 °C dargestellt. Mit Hilfe numerischer Simulationsmodelle werden Fehlerquellen an ausgewählten stationären Messapparaturen analysiert. Unter Beachtung materialbedingter Schwankungen und von Veränderungen der Materialien unter Temperaturbelastung zeigen sich beim Vergleich der Messergebnisse keine systematischen Unterschiede zwischen den verwendeten Verfahren. Es werden Empfehlungen zur Auswahl geeigneter Messverfahren abgeleitet, die neben der Probenpräparation speziell die Isotropie / Anisotropie der verschiedenen Dämmstoffe berücksichtigen.
7

Strahlungseffekte bei instationären Heizdrahtmessungen an porösen Wärmedämmstoffen

Tran, Le-Thanh-Son 26 July 2002 (has links)
Die Integral-Differentialgleichung zur Beschreibung des Energietransports der gekoppelten Strahlung/Leitung in einem grauen, absorbierenden und emittierenden, von zwei koaxial zylindrischen Oberflächen begrenzten Medium wird mit der Methode der Finiten Differenzen numerisch gelöst, um Strahlungseffekte bei instationären Heizdrahtmessungen an porösen Wärmedämmstoffen theoretisch zu analysieren. Der Einfluss des Extinktionskoeffizienten des Probenmediums, der Emissivität des Heizdrahtes, der Messtemperatur, der Heizleistung und des thermischen Kontaktwiderstandes wird untersucht. Aufgrund der Berechnungsergebnisse wird die effektive Wärmeleitfähigkeit poröser Wärmedämmstoffe unterbestimmt, wenn deren Extinktionskoeffizienten klein sind. Die Untergrenze des erlaubten Extinktionsbereiches verschiebt sich zu größeren Werten mit zunehmender Messtemperatur. Der thermische Kontaktwiderstand bedeutet eine Verfälschungsgefahr von Messergebnissen, insbesondere wenn der Heizdraht stark emittiert und die Probenoberfläche reflektiert.
8

Gefüge-Simulationen an Nicht-Oxid-Keramiken: Korrelation zwischen Mikrostruktur und makroskopischen Eigenschaften / Structure simulations on non-oxide ceramics: correlation between microstructure and macroscopic properties

Brockmann, Dorothea E. R. January 2018 (has links) (PDF)
Die experimentelle Verbesserung der makroskopischen Eigenschaften (z. B. thermische oder mechanische Eigenschaften) von Keramiken ist aufgrund der zahlreichen erforderlichen Experimente zeitaufwändig und kostenintensiv. Simulationen hingegen können die Korrelation von Mikrostruktur und makroskopischen Eigenschaften nutzen, um die Eigenschaften von beliebigen Gefügekompositionen zu berechnen. In bisherigen Simulationen wurden meist stark vereinfachte Modelle herangezogen, welche die Mikrostruktur einer Keramik nur sehr grob widerspiegeln und deshalb keine zuverlässigen Ergebnisse liefern. In der vorliegenden Arbeit wird die Mikrostruktur-Eigenschafts-Korrelation der drei wichtigsten Nicht-Oxid-Keramiken untersucht. Dies sind Aluminiumnitrid (AlN), Siliciumnitrid (Si3N4) und Siliciumcarbid (SiC). Diese drei Keramiktypen vertreten die häufigsten Mikrostrukturtypen, welche bei Nicht-Oxid-Keramiken auftreten können. Zu jedem Keramiktyp liegen zwei verschiedene Proben vor. Alle drei untersuchten Keramiktypen sind zweiphasig. Die Hauptphase von AlN und Si3N4 besteht aus keramischen Körnern, die Nebenphase erstarrt während der Sinterung aus den zugesetzten Sinteradditiven. Die Restporosität von AlN und Si3N4 wird als vernachlässigbar angesehen und in den Simulationen nicht berücksichtigt. Bei den SiC-Proben handelt es sich um Keramiken mit bimodaler Korngröÿenverteilung. Durch Infiltration mit flüssigem Silicium wurden die Hohlräume zwischen den Körnern aufgefüllt, um porenfreie SiSiC-Proben zu erhalten. Anhand von Simulationen werden zunächst reale Mikrostrukturen in Anlehnung an vorliegende Vergleichsproben nachgebildet. Diese Modelle werden durch Abgleich mit rasterelektronenmikroskopischen 2D-Aufnahmen der Proben verifiziert. An den Modellen werden mit der Methode der Finite-Element-Simulation makroskopische Eigenschaften (Wärmeleitfähigkeit, Elastizitätsmodul und Poisson-Zahl) der Keramiken simuliert und mit experimentellen Messungen an den vorliegenden Proben abgeglichen. Der Vergleich der Mikrostruktur von den computergenerierten Gefügen und den vorliegenden Proben zeigt in der Mustererkennung durch das menschliche Auge und quantitativ in den Gefügeparametern eine gute Übereinstimmung. Für die makroskopischen Eigenschaften wird auf der Basis einer ausführlichen Literaturrecherche zu den Materialparametern der beteiligten Phasen eine gute Übereinstimmung zwischen den experimentell gemessenen und den simulierten Eigenschaften erreicht. Evtl. auftretende Abweichungen zwischen Experiment und Simulation können damit erklärt werden, dass die Proben Verunreinigungen enthalten, da aus der Literatur bekannt ist, dass Verunreinigungen eine Verschlechterung der Wärmeleitfähigkeit bewirken. Nachdem die Gültigkeit der Modelle verifiziert ist, wird der Einfluss von charakteristischen Mikrostrukturparametern und Phaseneigenschaften auf die Wärmeleitfähigkeit, den Elastizitätsmodul und die Poisson-Zahl der Keramiken untersucht. Hierzu werden die Mikrostrukturparameter von AlN und Si3N4 gezielt um die Parameter der vorliegenden Vergleichsproben variiert. Bei beiden Keramiktypen werden die Volumenanteile der beteiligten Phasen sowie die mittlere Sehnenlänge der keramischen Körner verändert. Bei den AlN-Keramiken wird zusätzlich der Dihedralwinkel variiert, welcher Auskunft über den Benetzungsgrad der Flüssigphase gibt; bei den Si3N4-Keramiken ist das Achsenverhältnis der langgezogenen Si3N4-Körner von Interesse und wird deshalb ebenfalls variiert. Es zeigt sich, dass die Aufteilung der Teilvolumina zwischen den zwei Phasen den größten Einfluss auf die Eigenschaften der Keramik hat, während die übrigen Mikrostrukturparameter nur eine untergeordnete Rolle spielen. Um die Qualität der Simulationen zu überprüfen, wird die Simulationsreihe an AlN mit unterschiedlicher Aufteilung der Volumina zwischen den beiden Phasen in Relation zu etablierten Modellen aus der Literatur (Mischungsregel und Modell nach Ondracek) gesetzt. Alle Simulationsergebnisse für die Wärmeleitfähigkeit und den Elastizitätsmodul liegen innerhalb der jeweils oberen und unteren Grenze beider Modelle. Es konnte also eine Verbesserung gegenüber den etablierten Modellen erzielt werden. An allen drei Keramiktypen wird der Einfluss der Materialeigenschaften der Haupt- und Nebenphase auf die makroskopischen Eigenschaften der Keramik untersucht. Hierfür werden die Wärmeleitfähigkeit, der Elastizitätsmodul und die Poisson-Zahl der Phasen getrennt voneinander über einen größeren Bereich variiert. Es stellt sich heraus, dass es vom Keramiktyp und dem Volumenanteil der Nebenphase abhängt, wie stark der Einfluss einer Komponenteneigenschaft auf die Eigenschaft der Keramik ist. Mit den im Rahmen dieser Arbeit durchgeführten Simulationen wird der Einfluss von Mikrostrukturparametern und Phaseneigenschaften berechnet. Auf der Grundlage dieser Simulationen können die Architektur des Gefüges simuliert und die Eigenschaften von Keramiken für individuelle Anwendungen berechnet werden. Dies ist die Basis für die Produktion von maßgeschneiderten Keramiken. Zudem können mit den validierten Mikrostrukturmodellen die Eigenschaften von unbekannten Mischphasen ermittelt werden, was experimentell oft nicht möglich ist. / Experimental improvement of macroscopic properties (e. g. thermal or mechanical properties) of ceramics require countless experiments and are therefore costly in terms of time and money. However, simulations use the correlation of microstructure and macroscopic properties to calculate properties of any microstructure. Until now, simulations usually use oversimplified models, which only roughly reproduce a ceramics' microstructure and therefore do not give reasonable results. In the paper on hand, the microstructure-property-correlation of the three most important non-oxide-ceramics (AlN, Si3N4, SiC) is analysed. These three types of ceramic represent the most important types of microstructures, which exist for nonoxidic ceramics. For each type of ceramic, two different samples are examined. All three ceramic types used are two-phase-ceramics. The primary phase of AlN and Si3N4 is built of the ceramic grains and the secondary phase solidifies from the added sinter additives. The remaining porosity of AlN and Si3N4 is regarded to be negligible and is therefore not considered in the simulations. The SiC-samples are ceramics with a bimodal grain size distribution. The spaces in between the grains are filled by infiltration with liquid silicon to get Si-SiC-samples free of pores. At first, by employing simulations, microstructures are generated, which are close to the samples' microstructures. These models are verified by comparing them with two-dimensional scanning electron micrographs. Macroscopic properties (thermal conductivity, Young's modulus, Poisson's Ratio) of the ceramics are calculated by finite element simulations and then compared to experimental measurements on the samples. Analyzing the microstructures of the computer-generated models and the samples shows good agreement in the pattern matching as well as quantitatively in the microstructures parameters. Also for the macroscopic properties good comparison between measured and simulated properties was reached, based on an elaborate literature research on material parameters of all phases involved. Occurring discrepancies between experiment and simulations are assumed to be due to impurities in the sample. From literature it is known that impurities lead to a decline in thermal conductivity. As the models are validated, the influence of characteristic microstructure parameters and material properties of the phases on the thermal conductivity, Young's modulus and Poisson's ratio of ceramics are analysed. Therefore some microstructure parameters of the models of AlN and Si3N4 are deviated from the parameters of the samples. For both ceramic types the volume fractions of both phases and the average chord length of the grains are varied. At the AlN models, the dihedral angle is varied as well, which provides information about the wetting behaviour of the secondary phase; at the Si3N4 models, the aspect ratio of the elongated Si3N4 grains are of importance and hence analysed. It turns out that the volume fractions of the phases have the most significant influence on the ceramics' properties, whereas the other microstructure parameters are less important. To check the quality of the simulations, the simulation data of AlN with different volume fractions is compared to established models from literature ("rule of mixture" and model according to Ondracek). All results from the simulations are within the upper and lower bounds of both models. In comparison with these models, an improvement was achieved. For all three ceramic types, the influence of the material properties of the main and the secondary phase on the ceramics' properties is investigated. Therefore, the phases' thermal conductivity, Young's modulus and Poisson's ratio are separately from each other varied over a large range. It turns out that the influence of a component's property on the property of the ceramic depends on the ceramic type and the volume fraction of the secondary phase. On models of all three ceramic types, the influence of the components' material properties on the macroscopic properties of the ceramic is analysed. Based on these simulations, the architecture of microstructures can be simulated and properties of random ceramics for individual purposes can by calculated. By this, it is possible to produce customised ceramics. Additionally, with the validated microstructure models, the properties of unknown mixed phases can be calculated, which is usually not possible in experiments.
9

Multiscale modeling of thermal conductivity of polycrystalline graphene sheets

Mortazavi, Bohayra, Pötschke, Markus, Cuniberti, Gianaurelio 02 December 2019 (has links)
We developed a multiscale approach to explore the effective thermal conductivity of polycrystalline graphene sheets. By performing equilibrium molecular dynamics (EMD) simulations, the grain size effect on the thermal conductivity of ultra-fine grained polycrystalline graphene sheets is investigated. Our results reveal that the ultra-fine grained graphene structures have thermal conductivity one order of magnitude smaller than that of pristine graphene. Based on the information provided by the EMD simulations, we constructed finite element models of polycrystalline graphene sheets to probe the thermal conductivity of samples with larger grain sizes. Using the developed multiscale approach, we also investigated the effects of grain size distribution and thermal conductivity of grains on the effective thermal conductivity of polycrystalline graphene. The proposed multiscale approach on the basis of molecular dynamics and finite element methods could be used to evaluate the effective thermal conductivity of polycrystalline graphene and other 2D structures.
10

Wärmeleitfähigkeit von hitzebeständigen und feuerfesten Dämmstoffen: Untersuchungen zu Ursachen für unterschiedliche Messergebnisse bei Verwendung verschiedener Messverfahren

Wulf, Rhena 20 February 2009 (has links)
Wärmeleitfähigkeiten von Dämmstoffen, die mit verschiedenen Verfahren gemessen wurden, zeigen in vielen Fällen Differenzen, deren Ursachen bisher nicht eindeutig geklärt werden konnten. In der Arbeit werden die Ergebnisse der systematischen experimentellen Ermittlung der Wärmeleitfähigkeit von isotropen und anisotropen Dämmstoffen mit verschiedenen stationären und instationären Messverfahren im Temperaturbereich 20 – 1200 °C dargestellt. Mit Hilfe numerischer Simulationsmodelle werden Fehlerquellen an ausgewählten stationären Messapparaturen analysiert. Unter Beachtung materialbedingter Schwankungen und von Veränderungen der Materialien unter Temperaturbelastung zeigen sich beim Vergleich der Messergebnisse keine systematischen Unterschiede zwischen den verwendeten Verfahren. Es werden Empfehlungen zur Auswahl geeigneter Messverfahren abgeleitet, die neben der Probenpräparation speziell die Isotropie / Anisotropie der verschiedenen Dämmstoffe berücksichtigen.

Page generated in 0.4413 seconds