• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 253
  • 79
  • 41
  • 33
  • 25
  • 20
  • 15
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 547
  • 165
  • 129
  • 101
  • 99
  • 98
  • 88
  • 68
  • 62
  • 59
  • 57
  • 56
  • 46
  • 44
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Roles of Retinoic Acid and Wnt Signaling during Zebrafish Development

Mandal, Amrita 03 June 2016 (has links)
No description available.
202

Structure-Function Analysis of GSK-3 Isoforms

Buescher, Jessica L. 03 September 2010 (has links)
No description available.
203

Wnt Signaling During Inflammation, Mechanical Stimulation and Differentiation

Sjostrom, Danen S. 09 September 2010 (has links)
No description available.
204

Characterization of a novel component of Wnt signaling pathway using zebrafish as a model organism.

Mandrekar, Noopur January 2016 (has links)
Wnt signaling plays important role in many aspects of embryogenesis such as cell proliferation, cell fate specification, cell polarity and organogenesis(Clevers 2006, van Amerongen and Nusse 2009). Wnt ligands have been shown to activate several intra-cellular signaling cascades, including the canonical or Wnt/-catenin dependent pathway and the non-canonical or -catenin independent pathway. Dishevelled (Dvl) occupies a key position at crossroads of all branches of Wnt signaling cascade. To understand, how Dishevelled (Dvl) may channel signaling into the downstream branches, we sought to identify novel effectors for Dishevelled (Dvl) using a yeast-two hybrid screen. In this study, we used the PDZ domain of Dishevelled (Dvl) as a bait and from this screen, we identified a new binding protein of Dishevelled (Dvl)-termed as Custos. To characterize the functional role of Custos in Wnt signaling pathway, we used mammalian cell culture and zebrafish as a model vertebrate organism. We confirmed the interaction between Custos and Dvl using co-immunoprecipation and GST pull-down. Custos also interacted with -catenin in vivo and this interaction was positively regulated by Wnt stimulation. Immunofluorescence experiments in mammalian cells showed that Custos co-localizes with the nuclear envelope marker, lamin and inhibits translocation of -catenin to the nucleus. In zebrafish embryos, Custos is a maternal gene and expressed throughout development. Spatial in situ hybridization studies showed that Custos was expressed in the dorsal region of the embryo at early stages and in the nervous system in zebrafish at 24hpf. To delineate the biological role of Custos during embryogenesis, we conducted a gain of function and loss of function studies. Overexpression of exogenous Custos and morpholino knockdown of Custos revealed that Custos is critical for embryonic patterning. Knockout of Custos in zebrafish revealed that Custos delays embryonic development and exhibits defects in pigmentation suggesting a plausible role in neural crest development. Taken together, our studies demonstrate that Custos is a novel component of canonical Wnt signaling and required for -catenin translocation into the nucleus and important for embryonic patterning. / Biology
205

The Role of SRGAP2 in Vertebrate Gastrulation

Wadsworth, Richard Lee January 2016 (has links)
During vertebrate gastrulation, an elaborate series of cellular motility events occur that define the three germ layers, and establishes the primary body axis. While it is known that non-canonical Wnt signaling plays a crucial role during this period of development, a complete picture of the molecular mechanisms controlling this pathway has yet to be established. Previous studies has shown that one essential component of the pathway linking the Wnt ligands to the cytoskeletal changes that occur during vertebrate development is Dishevelled-associated activator of morphogenesis (Daam1). Daam1 bridges the gap between Dishevelled (Dvl) and the small GTPase RhoA and is required for Wnt-dependent RhoA activation, but the biochemical details of this process are to date still undefined. To identify additional factors that might be involved in this process, a yeast two-hybrid screen using a C-terminal region of Daam1 was performed. During this screen SLIT-ROBO Rho GTPase-activating protein 2 (SRGAP2), was identified. The studies presented here were designed to establish a functional interaction between SRGAP2 and Daam1 during non-canonical Wnt signaling and to characterize the function of SRGAP2 during early vertebrate development. My studies uncover that SRGAP2 and Daam1 do indeed interact and that this interaction is positively influenced by Wnt stimulation. I also uncover via immunocytochemistry, that these two proteins share common sub-cellular localization patterns in HeLa cells that is responsive to Wnt stimulation. Further, I show that ectopic expression of SRGAP2 in HeLa cells has adverse effects on stress fiber formation in Wnt5a treated cells. And lastly, micro-injection experiments in Xenopus laevis show that over- or under-expression of SRGAP2 produces severe gastrulation defects in the developing embryos. These studies together demonstrate that SRGAP2 plays a critical role in regulating non-canonical Wnt signaling through its interaction with Daam1 and through regulation of the monomeric GTPases Rho. It also shows that SRGAP2 plays a functional role for gastrulation during early vertebrate development. / Biology
206

Defining mechanisms underlying context-specific TCF/LEF deployment at target genes

Gordon, Victor January 2020 (has links)
The canonical Wnt/β-catenin signaling pathway is essential for the proper regulation of cell-fate decisions throughout embryogenesis and in adult issues. Activation of the Wnt signaling pathway allows for nuclear localization of the cell adhesion protein β-catenin, which then interacts primarily with members of the T-Cell Factor/Lymphoid Enhancer Factor (TCF/LEF) transcription factor family to modulate gene activity. The TCF/LEF family includes TCF7, TCF7L1, TCF7L2, and LEF1. While all four family members share a common DNA binding consensus sequence, their expression throughout embryogenesis and adult stem cell populations is unique, with their misexpression commonly occurring in Wnt related cancers and correlating strongly with metastasis and poor patient outcomes. TCF/LEF exchange at target gene loci is a key feature of mediating context-specific cellular responses to Wnt signaling and can be observed to occur in a variety of populations throughout development and in adult stem cell populations. To model TCF/LEF exchange in vitro we have optimized a micropatterning fabrication and culture protocol capable of identifying and isolating discrete LEF1-only and TCF7L1-only populations during gastrulation-like processes. To characterize how complements of TCF/LEFs change during cellular divisions we have developed a novel mitotic chromatin proteomic technique. This method identifies LEF1 as the only TCF/LEF to remain associated with mitotic chromatin in Wnt-activated conditions in mouse embryonic stem cells that are transitioning out of pluripotency as a consequence of removing leukemia inhibitory factor from their culture medium. Additionally, gene targeting techniques were used to label endogenous LEF1 and TCF7L1 with different fluorescent proteins in a single mouse embryonic stem cell line, allowing us to use TCF/LEF protein expression as a reporter of Wnt/β-catenin pathway status, which we found to be capable of identifying a unique set of compounds that are undetected by traditional Wnt activity (TOP-Flash) reporter screens. By using gene editing technology, and novel applications of proteomic and cell culture techniques, we have been able to investigate the mechanisms driving TCF/LEF expression and exchange in mouse embryonic stem cells to identify potentially clinically relevant therapeutic targets for their potential use in addressing TCF/LEF dysregulation in cancer. We have identified a novel mechanism through which TCF/LEFs maintain cell fate over cellular division; presented a novel live-cell drug screening platform capable of identifying compounds missed by existing platforms; and presented an optimized cell culture technique for the isolation of TCF/LEF exchange events. Taken together, the work in this thesis provides new insights into the mechanisms through which TCF/LEFs regulate their gene targets during cell fate transitions and throughout mitosis. / Thesis / Doctor of Science (PhD) / Throughout development and adult life cells are in constant communication, using a variety of cell signaling pathways to maintain adult stem cell populations and to pattern tissues throughout the body. Communication between cells often requires one cell to release a protein molecule (called a ligand) that is recognized by a receptor molecule on the surface of another cell. These cell surface receptors, when bound by the signaling ligand become activated and often set of a cascade of internal cellular events that ultimately result in changes in gene transcription in the nucleus. These transcriptional changes are toggled by proteins known as sequence-specific transcription factors that are able to selectively regulate expression of target genes. The net effect of combinations of extracellular ligands binding cell surface receptors determines the selective recruitment of specific transcription factors that activate a cell’s transcriptional program, in turn defining its fate and function. A very important developmental signaling pathway is the Wnt signaling pathway, which employs a family of secreted Wnt molecules as ligands. The Wnt pathway is critical at all stages of organismal development and plays an essential role in tissue maintenance in mature animals. However, due to its critical role in stem cell maintenance, when mutations occur in Wnt signaling components it can have dire consequences. Wnt signaling has been found to be disrupted in more than 70-80% of all cancers. One major feature among these Wnt-related cancers is the inappropriate expression and mobilization of Wnt transcription factors. While the expression and activity of Wnt transcription factors – known as T-Cell Factor/Lymphoid Enhancer Factors (TCF/LEFs) – changes throughout development and stem cell maintenance, their inappropriate expression is frequently associated with metastasis and poor patient outcomes. We have used mouse embryonic stem cells (mESCs) as a model system with which to study the mechanisms employed by TCF/LEFs to regulate their target genes. Through a number of approaches, which include adding fluorescent tags to TCF/LEF factors to track their intercellular locations and expression levels or enzymatic tags to identify proteins that interact with individual TCF/LEFs during a snapshot of cell activity, we have gained new knowledge about how these critical transcription factors regulate Wnt-regulated transcriptional programs. We also describe a method for generating micropatterned growth surfaces for mESCs that forces clusters of cells to grow within small circular shapes with a diameter of 1 mm or less. We show that mESCs confined to circular micropatterns differentiate in a highly reproducible manner that allows us to study the cell populations undergoing differentiation with a focus on cell fate determination mechanisms.
207

Mathematical modeling of pathways involved in cell cycle regulation and differentiation

Ravi, Janani 12 January 2012 (has links)
Cellular processes critical to sustaining physiology, including growth, division and differentiation, are carefully governed by intricate control systems. Deregulations in these systems often result in complex diseases such as cancer. Hence, it is crucial to understand the interactions between molecular players of these control systems, their emergent network dynamics, and, ultimately, the overall contribution to cellular physiology. In this dissertation, we have developed a mathematical framework to understand two such cellular systems: an early checkpoint (START) in the budding yeast cell cycle (Chapter 1), and the canonical Wnt signaling pathway involved in cell proliferation and differentiation (Chapter 2). START transition is an important decision point where the cell commits to one round DNA replication followed by cell division. Several years of experimental research have gone into uncovering molecular details of this process, but a unified understanding is yet to emerge. In chapter one, we have developed a comprehensive mathematical model of START transition that incorporates several findings including information about the phosphorylation state of key START proteins and their subcellular localization. In the second chapter, we focus on modeling the canonical Wnt signaling pathway, a cellular circuit that plays a key role in cell proliferation and differentiation. The Wnt pathway is often deregulated in colon cancers. Based on some evidence of bistability in the Wnt signaling pathway, we proposed the existence of a positive feedback loop underlying the activation and inactivation of the core protein complex of the pathway. Bistability is a common feature of biological systems that toggle between ON and OFF states because it ensures robust switching back and forth between the two states. To study and explain the behavior of this dynamical system, we developed a mathematical model. Based on experimentally determined interactions, our simple model recapitulates the observed phenomena of bimodality (bistability) and hysteresis under the effects of the physiological signal (Wnt), a Wnt-mimic (LiCl), and a stabilizer of one of the key members of core complex (IWR-1). Overall, we believe that cell biologists and molecular geneticists can benefit from our work by using our model to make novel quantitative predictions for experimental verification. / Ph. D.
208

MicroRNA-214 controls skin and hair follicle development by modulating the activity of the Wnt pathway

Ahmed, Mohammed I., Alam, Majid A., Emelianov, V.U., Poterlowicz, Krzysztof, Patel, Ankit, Sharov, A.A., Mardaryev, Andrei N., Botchkareva, Natalia V. January 2014 (has links)
Yes / Skin development is governed by complex programs of gene activation and silencing, including microRNA-dependent modulation of gene expression. Here, we show that miR-214 regulates skin morphogenesis and hair follicle (HF) cycling by targeting β-catenin, a key component of the Wnt signaling pathway. miR-214 exhibits differential expression patterns in the skin epithelium, and its inducible overexpression in keratinocytes inhibited proliferation, which resulted in formation of fewer HFs with decreased hair bulb size and thinner hair production. The inhibitory effects of miR-214 on HF development and cycling were associated with altered activities of multiple signaling pathways, including decreased expression of key Wnt signaling mediators β-catenin and Lef-1, and were rescued by treatment with pharmacological Wnt activators. Finally, we identify β-catenin as one of the conserved miR-214 targets in keratinocytes. These data provide an important foundation for further analyses of miR-214 as a key regulator of Wnt pathway activity and stem cell functions during normal tissue homeostasis, regeneration, and aging.
209

Hypothalamic Wnt signalling and its role in energy balance regulation

Helfer, Gisela, Tups, A. 14 March 2016 (has links)
Yes / Wnt signalling and its downstream effectors are well known for their roles in embryogenesis and tumourigenesis, including the regulation of cell proliferation, survival and differentiation. In the nervous system, Wnt signalling has been described mainly during embryonic development, although accumulating evidence suggests that it also plays a major role in adult brain morphogenesis and function. Studies have predominantly concentrated on memory formation in the hippocampus, although recent data indicate that Wnt signalling is also critical for neuroendocrine control of the developed hypothalamus, a brain centre that is key in energy balance regulation and whose dysfunction is implicated in metabolic disorders such as type 2 diabetes and obesity. Based on scattered findings that report the presence of Wnt molecules in the tanycytes and ependymal cells lining the third ventricle and arcuate nucleus neurones of the hypothalamus, their potential importance in key regions of food intake and body weight regulation has been investigated in recent studies. The present review brings together current knowledge on Wnt signalling in the hypothalamus of adult animals and discusses the evidence suggesting a key role for members of the Wnt signalling family in glucose and energy balance regulation in the hypothalamus in diet-induced and genetically obese (leptin deficient) mice. Aspects of Wnt signalling in seasonal (photoperiod sensitive) rodents are also highlighted, given the recent evidence indicating that the Wnt pathway in the hypothalamus is not only regulated by diet and leptin, but also by photoperiod in seasonal animals, which is connected to natural adaptive changes in food intake and body weight. Thus, Wnt signalling appears to be critical as a modulator for normal functioning of the physiological state in the healthy adult brain, and is also crucial for normal glucose and energy homeostasis where its dysregulation can lead to a range of metabolic disorders.
210

Wnt Signaling as a Therapeutic Target in Cancer and Metastasis

Morgan, Richard, Ankrah, R., El-Tanani, S., Patterson, Laurence H., Loadman, Paul, Rudland, P.S., El-Tanani, Mohamed 06 January 2017 (has links)
No / Wnt signaling normally functions in cell determination and proliferation and is essential for embryonic development. It does this by regulating target genes through a tightly regulated but complex signaling cascade. Overexpression of these genes due to aberrant Wnt activity can lead to uncontrolled cell growth and survival, and ultimately oncogenesis. Wnt signaling is also involved in epithelial–mesenchymal transition that contributes to tumor progression and metastasis evidence that tumor growth can be suppressed irrespective of other neoplastic promoters when the Wnt pathway is blocked and this has led to interest in its use as a therapeutic target. Recent developments in our understanding of the Wnt signaling cascade have led to research into drugs that specifically target different levels in this pathway, and the identification of β-catenin as the primary cause of dysregulated Wnt signaling has led to a number of protein knockdown strategies. Moreover, increased knowledge of the 300–400 Wnt inducible genes has provided a large untapped source of new potential therapeutic targets. Existing drugs such as nonsteroidal anti-inflammatory drugs and vitamin A and D derivatives have also shown efficacy in disrupting the Wnt signaling pathway and, together with a new generation of derivatives, they may soon be in clinical trials. This chapter details the Wnt signaling pathway, its role in different cancers, and some potential therapeutic targets that may show promise as effective cancer treatments.

Page generated in 0.0228 seconds