• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

turbulent convective mass transfer in electrochemical systems

Gurniki, Francois January 2000 (has links)
No description available.
2

Evaluation of RANS turbulence models for flow problems with signigicant impact of boundary layers

Furbo, Eric January 2010 (has links)
This master’s thesis was provided by the Swedish Defence Research Agency, FOI. The task is to test several RANS (Reynolds-averaged Navier-Stokes) models on two different case geometries and compare the results with LES and experimental data. The first is two dimensional, constructed for flow separation at a sharp edge. The second is three dimensional and flow separation occurs at a smooth surface. The models tested are implemented in the open source CFD (Computational Fluid Dynamics) program, OpenFOAM. OpenFOAM uses the finite volume method and the SIMPLE algorithm as solution procedure. The main flow features evaluated is the shape, position and size of the flow separation. Most of the models tested have problems describing the complex dynamics of flow separation in these particular cases. In addition to the simulations, the RANS k-epsilon turbulence model is presented and the RANS equations and the equation for the turbulent kinetic energy are derived from the Navier-Stokes equations. The theory behind wall functions is described and these equations together with the equations in the k-epsilon model are compared with the equations implemented in OpenFOAM.
3

turbulent convective mass transfer in electrochemical systems

Gurniki, Francois January 2000 (has links)
No description available.
4

Development of a near-wall domain decomposition method for turbulent flows

Jones, Adam January 2016 (has links)
In computational fluid dynamics (CFD), there are two widely-used methods for computing the near-wall regions of turbulent flows: high Reynolds number (HRN) models and low Reynolds number (LRN) models. HRN models do not resolve the near-wall region, but instead use wall functions to compute the required parameters over the near-wall region. In contrast, LRN models resolve the flow right down to the wall. Simulations with HRN models can take an order of magnitude less time than with LRN models, however the accuracy of the solution is reduced and certain requirements on the mesh must be met if the wall function is to be valid. It is often difficult or impossible to satisfy these requirements in industrial computations. In this thesis the near-wall domain decomposition (NDD) method of Utyuzhnikov (2006) is developed and implemented into the industrial code, Code_Saturne, for the first time. With the NDD approach, the near-wall regions of a fluid flow are removed from the main computational mesh. Instead, the mesh extends down to an interface boundary, which is located a short distance from the wall, denoted y*. A simplified boundary layer equation is used to calculate boundary conditions at the interface. When implemented with a turbulence model which can resolve down to the wall, there is no lower limit on the value of y*. There is a Reynolds number-dependent upper limit on y*, as there is with HRN models. Thus for large y*, the model functions as a HRN model and as y*→ 0 the LRN solution is recovered. NDD is implemented for the k−ε and Spalart-Allmaras turbulence models and is tested on five test cases: a channel flow at two different Reynolds numbers, an annular flow, an impinging jet flow and the flow in an asymmetric diffuser. The method is tested as a HRN and LRN model and it is found that the method behaves competitively with the scalable wall function (SWF) on simpler flows, and performs better on the asymmetric diffuser flow, where the NDD solution correctly captures the recirculation region whereas the SWF does not. The method is then tested on a ribbed channel flow. Particular focus is given to investigating how much of the rib can be excluded from the main computational mesh. It is found that it is possible to remove 90% of the rib from the mesh with less than 2% error in the friction factor compared to the LRN solution. The thesis then focuses on the industrial case of the flow in an annulus where the inner wall, referred to as the pin, has a rib on its surface that protrudes into the annulus. Comparison is made between CFD calculations, experimental data and empirical correlations. It is found that the experimental friction factors are significantly larger than those found with CFD, and that the trend in the friction factor with Reynolds number found in the experiments is different. Simulations are performed to quantify the effect that a non-smooth surface finish on the pin and rib surface has on the flow. This models the situation that occurs in an advanced gas-cooled nuclear reactor, when a carbon deposit forms on the fuel pins. The relationship between the friction factor and surface finish is plotted. It is demonstrated that surface roughness left over by the manufacturing process in the experiments is not the source of the discrepancy between the experimental and CFD results.
5

Lois de paroi adaptatives pour un modèle de fermeture du second ordre dans un contexte industriel / Adaptive wall treatment for a second order turbulence model in an industrial context

Wald, Jean François 29 June 2016 (has links)
Les calculs de CFD industriels pour les écoulements turbulents commencent par une phase complexe de réalisation de maillage (calculs de fond de cuve, de plénum supérieur ou d’assemblages combustibles par exemple dans le domaine nucléaire). Les premières contraintes prises en compte sont le plus souvent géométriques (complexité, détail, intuition ou retour d'expérience concernant les endroits « importants » où le maillage doit être raffiné). On doit cependant respecter des contraintes inhérentes aux modèles de turbulence RANS (Reynolds Averaged Navier Stokes) utilisés notamment la taille de la première cellule de calcul à la paroi. Si on utilise un modèle dit « Haut-Reynolds » (k- ε standard, SSG, …), on ne devrait trouver que des cellules de paroi ayant un centre à une distance adimensionnelle au moins égale à 20 pour pouvoir d’une part justifier l'utilisation de la loi « universelle » logarithmique pour la vitesse et d’autre part, ce qui souvent occulté, respecter le fait que ces modèles ne sont pas conçus pour des distances plus basses. En revanche, si on utilise un modèle dit « Bas-Reynolds » (BL-v²/k, EB-RSM, …), on devrait partout avoir des cellules de paroi ayant un centre à une distance adimensionnelle de la paroi très faible. Si ces modèles sont utilisés avec une partie des cellules en paroi ayant une distance adimensionnelle nettement supérieure, les résultats peuvent être catastrophiques (le calcul peut ou bien diverger ou bien donner des résultats avec une physique totalement fausse). Cette thèse propose le développement d'un nouveau modèle de turbulence avec lois de paroi adaptatives qui donne des résultats satisfaisants quelque soit le type de maillage utilisé, en particulier quand ce dernier contient à la fois des cellules dont le centre est à une distance « Bas-Reynolds » et « Haut-Reynolds ». Étant donné les écoulements complexes des configurations industrielles, ce nouveau modèle s'appuie sur l'utilisation d'un modèle du second ordre connu pour son bon comportement : le modèle EB-RSM. Ce modèle permet de reproduire l'anisotropie de la turbulence et comble certaines lacunes des modèles du premier ordre. Ce modèle est disponible dans Code_Saturne, code open source développé par EDF et au sein duquel les développements ont été réalisés. / CFD computations of turbulent flows always begin with a complex meshing process (upper plenum, fuel assembly in the nuclear industry for example). Geometrical constraints are the first ones to be satisfied (level of details, important zones to refine regarding “user experiences”). One has however to satisfy constraints that are inherent to the RANS model (Reynolds Averaged Navier Stokes) used for the computation. For example, if a « High-Reynolds » (k-ε standard, SSG, …) model is used one should only have wall cells with a dimensionless distance to the wall greater or equal to 20 to justify the use of the universal “law of the wall”. On the other hand, if a « Low-Reynolds » (BL-v²/k, EB-RSM, …) model is used, one should only find wall cells with a dimensionless distance to the wall below 1. If those models are used in an inappropriate way the results could be dramatic (computations can either diverge or give unphysical results). This thesis proposes the development of a new turbulence model with adaptive wall treatments that gives satisfactory results on all types of meshes. In particular, the model will be able to cope with meshes containing both « High-Reynolds » and « Low-Reynolds » wall cells. Given the complex flows encountered in the nuclear industry this thesis will use a model known for its good behavior: the EB-RSM model. This model is able to reproduce the anisotropy of the turbulence and give more satisfactory results than eddy viscosity models in different configurations. This model is available in Code_Saturne, an open source code developed at EDF. Al the developments are made in this code.
6

Mechanistic Modeling of Wall-Fluid Thermal Interactions for Innovative Nuclear Systems

Thiele, Roman January 2015 (has links)
Next generation nuclear power plants (GEN-IV) will be capable of not only producing energy in a reliable, safe and sustainable way, but they will also be capable of reducing the amount of nuclear waste, which has been accumulated over the lifetime of current-generation nuclear power plants, through transmutation. Due to the use of new and different coolants, existing computational tools need to be tested, further developed and improved in order to thermal-hydraulically design these power plants.This work covers two different non-unity Prandtl number fluids which are considered as coolants in GEN-IV reactors, liquid lead/lead-bismuth-eutectic and supercritical water. The study investigates different turbulence modeling strategies, such as Large Eddy Simulation (LES) and Reynolds-Averaged Navier-Stokes (RANS) modeling, and their applicability to these proposed coolants. It is shown that RANS turbulence models are partly capable of predicting wall heat transfer in annular flow configurations. However, improvements in these prediction should be possible through the use of advanced turbulence modeling strategies, such as the use of separate thermal turbulence models. A large blind benchmark study of heat transfer in supercritical water showed that the available turbulence modeling strategies are not capable of predicting deteriorated heat transfer in a 7-rod bundle at supercritical pressures. New models which take into account the strong buoyancy forces and the rapid change of the molecular Prandtl number near the wall occurring during the transition of the fluid through the pseudocritical point need to be developed. One of these strategies to take into account near-wall buoyancy forces is the use of advanced wall functions, which cannot only help in modeling these kind of flows, but also decrease computational time by 1 to 2 orders of magnitude. Different advanced wall function models were implemented in the open-source CFD toolbox OpenFOAM and their performance for different flows in sub- and supercritical conditions were evaluated. Based on those results, the wall function model UMIST-A by Gerasimov is recommended for further investigation and specific modeling tactics are proposed.Near-wall temperature and velocity behavior is important to and influenced by the wall itself. The thermal inertia of the wall influences the temperature in the fluid. However, a more important issue is how temperature fluctuations at the wall can induce thermal fatigue. With the help of LES thermal mixing in a simplified model of a control rod guide tube was investigated, including the temperature field inside the control rod and guide tube walls. The WALE sub-grid turbulence model made it possible to perform LES computations in this complex geometry, because it automatically adapts to near-wall behavior close to the wall, without the use of ad-hoc functions. The results for critical values, such as the amplitude and frequency of the temperature fluctuations at the wall, obtained from the LES computations are in good agreement with experimental results.The knowledge gained from the aforementioned investigations is used to optimize the flow path in a small, passively liquid-metal-cooled pool-type GEN IV reactor, which was designed for training and education purposes, with the help of 3D CFD. The computations were carried out on 1/4 of the full geometry, where the small-detail regions of the heat exchangers and the core were modeled using a porous media approach. It was shown that in order to achieve optimal cooling of the core without changing the global geometry a ratio of close to unity of the pressure drop over the core and the heat exchanger needs to be achieved. This is done by designing a bottom plate which channels enough flow through the core without choking the flow in the core. Improved cooling is also achieved by reducing heat losses from the hot leg through the flow shroud to the cold leg by applying thermal barrier coating similar to methods used in gas turbine design. / Nästa generations kärnkraftverk (GEN-IV) kan inte bara producera el på ett pålitligt, säkert och hållbart sätt, utan det kan också reducera mängden kärnavfall, som har producerats under tiden som man använt nuvarande generationen kärnkraftverk, genom att transmutera avfallen. Framtidens kärnkraftverk använder andra kylmedel än nuvarande kraftverk som t.ex. flytande bly, gas eller superkritiskt vatten. Det betyder att många beräkningsverktyg måste testas, utvecklas och förbättras så att man kan genomföra termohydrauliska designberäkningar. Den här avhandlingen omfattar två olika kylmedel, flytande bly och superkritiskt vatten, som har ett Prandtl-tal som skiljer sig från 1 och kommer att användas i GEN-IV reaktorer. Studien undersöker olika strategier för att modellera turbulens som Large Eddy Simulation (LES) och Reynolds-Averaged Navier-Stokes (RANS) och hur man kan använda dessa strategierna i beräkningar av strömning och värmetransfer i den nya kylvätskan. Undersökningen visar att RANS turbulensmodeller delvis kan förutsäga värmeöverföringen vid en vägg i en ringformad strömningsgeometri. Förbättringar av förutsägelsen ska vara möjlig genom användning av avancerade strategier för turbulensmodellering, t.ex. termiska turbulensmodeller. En stor prestandajämförelse för värmeöverföring i superkritiskt vatten visade att ingen av nuvarande strategier för turbulensmodellering kan förutsäga försämrad värmeöverföring i en 7-stavknippet under superkritiskt tryck. Nya modeller, som omfattar de starka flytkrafterna och den snabba förändringen av den molekulära Prandtl-tal vid väggen som uppstår när vätskan går genom pseudokritiska punkten, måste utvecklas. Avancerade väggfunktioner är en av strategierna som kan ta hänsyn till dessa fenomen. Väggfunktioner kan inte bara hjälpa till att modellera de typer av flöden som behövs utan kan också hjälpa till att sänka beräkningstiden med en eller två tiopotenser. Olika avancerade väggfunktioner i open-source beräkningsverktyget OpenFOAM implementerades och deras prestation i sub- och superkritiska vattenflödar värderades. Baserat på detta rekommenderas Gerasimovs modell för ytterligare utredning. Dessutom läggs olika strategier fram för att utöka modellens validitet till flöde med superkritiskt vatten i sammanband med försämrad och förbättrad värmeöverföring. Kunskap om beteendet av temperatur och hastighet i väggens närhet är viktigt för väggens integritet, detta då väggen även påverkar beteendet. Väggens termiska tröghet påverkar flödets temperatur och hastighet. Dock är ett ännu viktigare problem, som kan uppträda, är att temperaturfluktuationer kan framkalla termisk utmattning i en vägg. Med användning av LES utreds termisk blandning av varmt och kallt vatten i en simplifierad modell av ett styrstavsledrör, inklusive temperaturfältet i styrstaven och ledrörsväggen. Användningen av WALE LES-turbulensmodellen gör det möjligt att utföra beräkningar i den komplexa geometrin, detta eftersom modellen anpassar sig automatiskt till fenomenen nära väggen utan användning av ad-hoc funktioner. LES resultaten för alla värden som är viktiga för att bestämma utmattningsbeteende, som amplitud och frekvens av temperaturfluktuationer i väggens närhet och i väggen själv, är i god överensstämmelse med resultaten från experiment från KTH i samma geometri.Kunskapen som vunnits genom ovannämnda utredningar användes för att optimera den termohydrauliska designen av en liten, pool-typ GEN-IV reaktor som är passivt kyld med flytande bly. Reaktorn är designad som en utbildnings- och träningsreaktor och optimeringen genomfördes med hjälp av 3D CFD. Beräkningarna genomfördes på en fjärdedel av reaktorns hela geometrin. Regioner med små detaljer, som de åtta värmeväxlarna och reaktorns kärna, modellerades genom porösa material. Det visar sig att för att ha en optimal kylning av kärnan, utan att förändra reaktorns globala geometri, måste förhållandet mellan tryckförlust i reaktorkärnan och värmeväxlarna vara nära 1. Detta uppnås genom att designa plattan vid ingången till kärnan så att tillräckligt med bly flödar genom kärnan utan att kväva flödet i denna. Ytterligare en förbättring i reaktorkylningen uppnås genom att reducera värmeförlusten genom väggen som skiljer varm och kall vätska. Detta görs med en strategi som förekommer i gasturbinteknologin, genom att man lägger till ett tunt skikt av termiskt isolerande material på väggen, som reducerar värmeöverföring med ungefär 50%. / <p>QC 20151123</p> / THEMFA / GENIUS / THINS
7

Sunda energieffektiva väggkonstruktioner för morgondagens flerbostadshus / Energy effective wall construction for tomorrow's sustainable housing

Gredin, Anders, Freiling, Martin January 2012 (has links)
Detta examensarbete har utförts vid högskoleingenjörsprogrammet Byggteknik och design vid Kungliga Tekniska högskolan och i samarbete med Ramböll Sverige. Syftet med denna rapport är att undersöka och analysera dagens ytterväggskonstruktioner för framtidens energieffektiva flerbostadshus.  Ytterväggskonstruktionen som är en del i byggnadens klimatskal, har en viktig och betydelsefull funktion för att kunna klara av framtida byggnaders energikrav. För att en väggkonstruktion ska fungera finns det en rad andra påverkande faktorer som måste tas hänsyn till. Därför kommer examensarbetet att fokusera på ytterväggskonstruktioners byggfysikaliska egenskaper såsom lufttäthet, fukt, uppbyggnad och beständighet. För att kunna lösa uppgiften har vi varit i kontakt med åtta olika byggnadsentreprenörer i Stockholmsområdet och utfört studiebesök ute i produktionen. Det finns flera faktorer som styr valet av ytterväggskonstruktion för projektet och på grund av detta finns det en rad olika typer av ytterväggskonstruktioner som används i dagens byggande av flerbostadshus. I vår jämförelse mellan sex olika ytterväggskonstruktioner har vi analyserat byggfysikaliska egenskaper och produktionsmetoder utifrån samma grundparametrar. Eftersom ytterväggarna skiljer sig mellan lätt respektive tung stomme har vi valt att presentera en från varje kategori. Enligt vår bedömning i vår analys har vi kommit fram till att en lätt utfackningsvägg med stålregelstomme och en tung väggkonstruktion med platsgjuten skalväggsstomme har de bästa förutsättningarna för att i framtiden utgöra de främsta alternativen inom ytterväggskonstruktioner för flerbostadshus.Rapporten är skriven för läsare som antas ha viss kunskap inom området byggteknik, dvs. den riktar sig främst till intressenter till byggbranschen och studenter inom området. / This thesis has been carried out at the Bachelor's program of construction engineering and design at the Royal Institute of Technology and in collaboration with Ramböll Sweden. The purpose of this report is to examine and analyze today's outer wall structures for the future of energy efficient buildings. The outer wall construction that is part of the building envelope has an important and significant flaw to meet future energy requirements of buildings. For a long time different wall construction projects have been designed to create wall panels with low U-values. For a wall structure to function, there are a number of confounding factors to be taken into account. Therefore, the thesis will focus on outer wall structure building physical properties such as air density, moisture, structure and stability.  In order to solve the task we have been in contact with eight different contractors in the Stockholm area and conducted field trips out in production. There are several factors that determine the choice of exterior wall construction for the project and because of this there are a number of different types of exterior wall structures used in today's construction of apartment buildings. In our comparison of six different wall constructions, we have analyzed the construction of physical characteristics and production methods on the same basic parameters. Since the outer walls differ between light and heavy body, we have chosen to present one from each class. Our conclusion is that a light stud walls with steel stud frame and a heavy wall construction with in-situ shell wall structure is best equipped to continue being the main option in exterior wall construction for apartment buildings. The report is written for readers who knowledgeable in the field of building technology, i.e. it is mainly addressed to interested parties in the construction industry and students in the field.
8

Development and validation of an improved wall-function boundary condition for computational aerodynamics / Utveckling och validering av ett förbättrat väggfunktionsranvillkor för aerodynamiska beräkningar

Palombo, Carlo Loris January 2021 (has links)
Computational Fluid Dynamics is a powerful and widely used tool for developing projectsthat concern flow motion, in very different fields. Industrial CFD solvers are continuouslydeveloped with the aim of improving accuracy and reducing the computational cost of thesimulations. Turbulent wall-flow cases are particular demanding as the presence of a solidsurfaceinterface generates steep gradients in the proximity of the wall. Resolving suchgradients can be crucial to obtain a consistent solution but also very expensive in terms ofgrid refinement, and hence computational time. Wall functions are widely used and offersignificant computational savings when it comes to near-wall flow resolution. Previous wallfunction implemented in the M-Edge solver suffered by poor performances in complex flowscharacterized by strong pressure-gradient phenomena, such as separation. A new formulationhas been developed and validated for k − omega and Spalart-Allmaras turbulence models. Testsimulations started from simple and near-ideal cases (2D zero pressure gradient flat plate)and advanced to always more complex flow cases and geometries (full 3D general fighter).Every case has been run coupling the wall-function boundary condition with three differentturbulence models: the Menter SST, the Menter BSL with an EARSM and the Spalart-Allmaras one-equation model. Overall results showed the upgraded performance of new wallfunction in flow resolution together with more agile grid requirements, faster and deeperconvergence of the residuals and a general reduction in computational time. / Berör strömmande fluider inom mycket olika områden. Industriella CFD-lösare utvecklaskontinuerligt i syfte att förbättra noggrannheten och minska beräkningskostnaderna försimuleringarna. Turbulent strömning nära väggar är särskilt krävande eftersom närvaron avett fast ytgränssnitt genererar stora gradienter i närheten av väggen. Att lösa upp sådanagradienter kan vara avgörande för att få en konsistent lösning men också mycket beräkningskrävandepå grund av nödvändig nätförfining.Väggfunktioner används ofta och ger betydandereduktioner i beräkningstid när det gäller att lösa upp strömningen nära vägg. En tidigareväggfunktion implementerad i M-Edge-lösaren led av dåliga prestanda i komplexa flödenmed starka tryckgradienter, såsom separation. En ny formulering har utvecklats och valideratsför k − omega och Spalart-Allmaras turbulensmodeller. Den har testats för enkla generiska fall(2D-plan platta utan tryckgradient) och för mer avancerade och komplexa strömningsfall ochgeometrier (komplett 3D-stridsflygplan).Varje fall har körts med väggfunktionens randvillkorkopplat med tre olika turbulensmodeller: Menter SST, Menter BSL med EARSM och Spalart-Allmaras enekvationsmodell. De övergripande resultaten visar att nya väggfunktionen gerbetydande förbättringar i att beskriva strömningen tillsammans med reducerade krav pånätupplösning, snabbare och djupare konvergens av lösningen och en allmän minskning avberäkningstiden.

Page generated in 0.1066 seconds