• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 6
  • Tagged with
  • 21
  • 21
  • 12
  • 11
  • 10
  • 10
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Turbulent Boundary Layer Superstructures Near the Wall and Their Relationship to Wall-Pressure Fluctuations

Butt, Humza 06 March 2025 (has links)
Turbulent boundary layer superstructures are characterized as regions of organized coherent motions that are on the order of several boundary layer thickness long in the streamwise direction and meander in the spanwise direction as they move and evolve within the boundary layer. They are presumed to exist within the outer region of the boundary layer, but studies have shown their presence in the lower part of the logarithmic layer as well. They are hypothesized to induce pressure fluctuations upon their interaction with rigid surfaces of various geometrical shapes, surface roughness and other aerodynamic features. Due to their large sizes, they are attributed to the low-wavenumber pressure fluctuations on aerodynamic surfaces that radiate far-field sound with minimal attenuation in energy, as well as internal noise within vehicles. This study provides experimental evidence of the existence and statistical nature of the superstructures throughout the various regions of a turbulent boundary layer. They are shown to increase in their streamwise length under favorable pressure gradients, while their spanwise meandering gets pronounced in adverse pressure gradient flows. Results from Particle Image Velocimetry (PIV) have shown that they evolve over time and space, by merging, diverging and branching during their life, making it important to characterize their unique statistics in space and time, separately. Moreover, it is shown that in the lower part of the log-layer ($x_2^+<150$) over 26,000 flow through times are needed to converge the length scales of the streamwise velocity to within 2 standard deviations. The streamwise extent of these superstructures gets attenuated in the vicinity of surface roughness ($x_2/k_s=2.8$ and $delta/k_s=30$) as the streamwise length scales shrink by roughly 35%. Synchronous measurements of the velocity fluctuations with alias-free surface pressure fluctuations reveal a strong relationship between the two. Specifically, at $x_2^+=250$, a significant coherence between the wall pressure and streamwise and wall-normal velocity for frequencies below 500 Hz dominating over 0.2 m of streamwise distance is shown. This significant coherence is presented as two separate lobes occurring at different bands of frequencies, potentially identifying two dominant features in the relationship. A wavenumber-frequency cross-spectrum of the pressure and streamwise velocity reveals the convective ridge dominating the flow. However, significant spectral levels in the sub-convective region, roughly 20 dB below the convective ridge are shown at low frequencies, confirming their direct relationship. Further analyses are required to reveal the contributions of non-linear Poisson source terms to the low-wavenumber pressure fluctuations with improved uncertainty by enforcing statistical convergence. / Doctor of Philosophy / Turbulence is one of the most frequently encountered physical phenomena that carries great interest in the field of fluid dynamics. The interaction of turbulent flows with the surfaces of objects traveling through fluid media generates a wide range of scientific interest, as the consequences of such interactions dictate the strength, stability, stealth, lifespan, and many other performance-based parameters of the vehicle. One important consequence of such an interaction is the generation of surface-induced vibrations that lead to the dispersion of both near-field and far-field noise, as well as potential structural impacts to the vehicle. It is hypothesized that the sound that travels great distances without significantly decaying in its energy is caused by the interaction of extremely large-scale turbulent eddies, often termed as boundary layer superstructures. These superstructures are expected to have scales as large as the vehicular surfaces that they interact with, making their detection an experimental and technical challenge. This experimental research presents evidence of the existence of extremely long, meandering superstructures throughout the log-region of a turbulent boundary layer. Their spatial and temporal nature is documented and presented as statistical results. It is shown that these superstructures interact with one another, as well as the surface, causing them to merge, diverge, branch out in all directions. It is also shown that in the vicinity of a rough surface, these superstructures shrink in their length, however this response may be limited to a narrow band of space just above the rough surface. Most importantly, a direct connection between superstructures and wall-pressure fluctuations is shown by providing experimental evidence. It is shown that the streamwise velocity and wall pressure fluctuations have a significant correlation that lasts for longer distance at low frequencies, which is the signature of a large-scale disturbance in the flow field. While this is a significant finding, it requires a great degree of experimental repetition to improve the certainty in the measurement and to distinguish the coherent features from the incoherent noise. Understanding this crucial connection between turbulence and surface pressure fluctuations can allow the development of improved prediction models. This will allow engineers to develop intelligent designs for modern vehicles, specifically in terms of their acoustic signatures and their structural integrity.
2

Turbulent boundary layers over receiver arrays

Dolder, Craig Nealon 03 November 2010 (has links)
A study of the fluctuating wall pressure and unsteady velocity field in a flat plate turbulent boundary layer flow was conducted over a moderate range of Reynolds numbers to better understand the mechanisms by which the two fields are coupled. Individual and coincident measurements of the fluctuating pressure and velocity fields were acquired using a 20 element hydrophone array and a two-component Laser Doppler Anemometer, respectively. Estimates of the velocity power spectral density (PSD) revealed two primary trends predicted by turbulence theory, k⁻¹ in the region of (ky) = 10⁰ due to anisotropy of the large scales, and k⁻⁵/³ for larger values of (ky) where structures appear more isotropic. The mean velocity profiles, having been collapsed using outer scaling variables, exhibited the presence of a slightly adverse pressure gradient with a n = 6 power law shape. As for the fluctuating wall pressure, increased Reynolds numbers produced increases in the amplitude and frequency of the characteristic signatures from which the pressure spectral densities were also found to collapse reasonably well using outer scaling variables. The results suggest the location in the flow where the mechanisms responsible for driving the fluctuating wall pressure signatures reside. Space-time correlations and frequency-wavenumber analysis reveal a convective ridge in the fluctuating wall pressure corresponding to the passage of several organized structures at 75% of the free stream velocity for all Reynolds numbers tested. / text
3

Boundary Layer Control and Wall-Pressure Fluctuations in a Serpentine Inlet

Harper, David Keneda 17 May 2000 (has links)
In this thesis, the benefits of boundary layer control (BLC) in improving aerodynamic performance and engine stability were examined in a compact, serpentine inlet exhibiting flow separation. A 1/14-scale turbofan engine simulator provided the flow through the inlet. The inlet's mass flow was measured to be 759 scfm (0.939 lbm/s) with an average throat Mach number of 0.23 when the simulator speed was 40 krpm. Boundary layer suction, blowing, and their combination were used to minimize the inlet's flow separation. The effectiveness of the suction alone and the blowing alone was shown to be approximately equivalent, and the effectiveness of the combined use of both was seen to be better than either one by itself. With blowing and suction flowrates around 1% of the simulator's core flow, the inlet's distortion was lowered by 40.5% (from 1.55% to 0.922%) while the pressure recovery was raised by 9.7% (from 87.2% to 95.6%). With its reduction in distortion, BLC was shown to allow the simulator to steadily operate in a range that would have otherwise been unstable. Minimizing the flow separation within the inlet was shown to directly relate to measurements from flush-mounted microphones along the inlet wall: as the exit distortion decreased the microphone spectrum also decreased in magnitude. The strong relationship between the aerodynamic profiles and the microphone signal suggests that microphones may be used in an active flow control scheme, where the BLC effort can be tailored for different engine operating conditions. Unfortunately, the sensing scheme used in this experiment showed the microphone signal to continue to decrease even when the separation is overly compensated; therefore refinements must be made before it would be practical in a real application. / Master of Science
4

Computational analysis of A-Pillar vortex formation in automotive applications

Bhambra, Devinder Pal Singh 01 1900 (has links)
The research focusses on computational analysis of vortex generation behind A-Pillar of simplified model derived from Jaguar XF that excludes air from the underside of vehicle. This vortex formation contributes in generating wall pressure fluctuations especially at speeds higher than 100km/hr. It is a collaborative work between Cranfield University and Jaguar Land Rover. Three dimensional pressure based incompressible flow using Large Eddy Simulation turbulence model is selected for computational analysis in FLUENT v14. This used high parallel computing systems available in Cranfield University. In the initial phase, three grid resolutions (coarse, medium and fine) were prepared in ICEM CFD with fine case consisting of 10 million cells. Qualitative analysis includes extraction of slices, 3-D and surface streamlines and pressure and velocity contours for capturing the unsteadiness due to the vortex formation over the front side glass surface. The iso-surface of Q captures the unsteadiness at the A-Pillar wake and side mirror wake over front side glass surface. It also reveals that the range of length scales captured were limited even at the finest grid resolution. Quantitative analysis compares the mean pressure (Cp) data with JLR results. Probes were located at 51 locations over the front side glass window that showed a good comparison; specifically for the fine grid; with maximum variation incurred at probes located in separation areas. For predicting the wall pressure fluctuations, a total of ten probes were located over the front side glass window surface. The surface pressure (static) data was recorded for 1 sec of flow-time and later imported in MATLAB for post-processing. The results obtained in 1/3rd octave band showed that the large scales were too energetic and small scales are not captured. However, comparing sound pressure levels with the Aero-acoustic Wind Tunnel (AWT); provided by JLR; it is concluded that either the grid is too coarse to resolve higher frequencies or the numerical modelling used is too dissipative to benefits the use of LES.
5

Development of a turbulent boundary layer downstream of a transverse square groove /

Sutardi, January 1998 (has links)
Thesis (M. Eng.), Memorial University of Newfoundland, 1998. / Bibliography: leaves 118-122.
6

Effect of different shaped transverse grooves on a zero pressure gradient turbulent boundary layer /

Sutardi, January 2002 (has links)
Thesis (Ph.D.)--Memorial University of Newfoundland, 2003. / Bibliography: leaves 215-232.
7

Modélisation thermo-chimio-mécanique de la cokéfaction : contribution à la compréhension du mécanisme de poussée / Thermo-chemo-mechanical modeling of coking process : contribution of understanding of wall pressure mechanism

Kolani, Damintode 18 December 2013 (has links)
Lors du procédé de cokéfaction, en raison de la faible largeur de la chambre de carbonisation des fours modernes, l’expansion horizontale de la pâte à coke génère une poussée sur les parois de chauffage. L’objectif de cette thèse, qui s’inscrit dans le cadre du projet européen « Swelling Pressure in a Coke Oven, Transmission on Oven walls », est de mieux comprendre le phénomène de poussée des charbons lors de la cokéfaction et de développer un modèle permettant d’anticiper ce phénomène. Pour cela, un modèle phénoménologique prenant en compte les phénomènes physico-chimiques en présence a été développé. Une mise en équation originale est proposée pour la cinétique de condensation des goudrons et le gonflement des grains de charbon lors de la pyrolyse. Le modèle proposé est le premier reproduisant simultanément la poussée sur les piédroits et la pression des gaz produits lors de la cokéfaction. Les résultats de simulation du cas particulier de la cokéfaction du charbon Blue Creek dans le four pilote du Centre de Pyrolyse de Marienau et les mesures de pression, de température et de poussée réalisées lors des essais présentent des écarts mais demeurent en bon accord. Ces écarts sont essentiellement dus à la méconnaissance des propriétés du charbon et de son comportement mécanique. L’hypothèse d’un comportement élastique linéaire entraîne une surestimation de la poussée. L’étude de sensibilité amène, entre autres, à la conclusion que la poussée ne dépend pas directement de la pression des gaz et que le gonflement des grains de charbon joue un rôle déterminant. / During the coking process, due to the small width of the carbonization chamber of modern ovens, horizontal expansion of coal generates a pressure on the oven walls. The objective of this thesis, which is part of European project « Swelling Pressure in a Coke Oven, Transmission on Oven walls », is to better understand the wall pressure phenomenon during coking process and to develop a model which can permit to anticipate this phenomenon. For this, a phenomenological model which takes into account the physical chemistry phenomena in presence is developed. An original implementation is proposed for the kinetic of tars condensation and the coal swelling during pyrolysis. The proposed model is the first which reproducing simultaneously the wall pressure and the gas pressure during coking process. The simulation results of coking process of the specific case of Blue Creek coal in the pilot oven of Centre de Pyrolyse de Marienau and the measurements of gas pressure, of temperature and of wall pressure performed during the tests have discrepancies but remain in good agreement. The discrepancies are mainly due to the ignorance of coal properties and its mechanical behavior. The assumption of linear elastic behavior leads to wall pressure overestimation. The sensitivity study permits to conclude that the wall pressure is not directly dependant to the gas pressure and that coal swelling play a causal role.
8

Généralisation des modèles stochastiques de pression turbulente pariétale pour les études vibro-acoustiques via l'utilisation de simulations RANS / Generalization of stochastic models of turbulent wall pressure for vibro-acoustic studies based on RANS simulations

Slama, Myriam 17 November 2017 (has links)
Le développement d’une couche limite turbulente sur des structures entraîne des vibrations et des nuisances sonores. Celles-ci sont estimées par des calculs vibro-acoustiques qui nécessitent le spectre de pression pariétale turbulente en fréquence-nombre d’onde. Ce spectre est généralement calculé via des modèles empiriques. Or ces modèles ont un domaine de validité très restreint et ne sont pas adaptés pour des écoulements complexes, avec notamment des gradients de pression. Dans ces travaux, une méthode est proposée pour calculer les corrélations spatio-temporelles de pression pariétale à partir d’une solution sous forme intégrale de l’équation de Poisson. Le spectre de pression est obtenu à partir de la transformation de Fourier de ces corrélations. L’expression retenue pour ces dernières fait intervenir les dérivées d’une fonction de Green ainsi que les champs de la vitesse moyenne et des tensions de Reynolds qui sont obtenus par simulation RANS. Elle fait aussi intervenir des coefficients de corrélation de vitesse spatio-temporelle qui doivent être modélisés. Pour cela, un nouveau modèle de coefficient de corrélation spatiale a été développé : l’Extended Anisotropic Model. Le calcul des corrélations et du spectre de pression est réalisé en utilisant une méthode numérique basée sur une stratégie d’échantillonnage adaptatif combinée à du krigeage. Elle permet de réduire le nombre de valeurs de corrélation de pression nécessaires pour obtenir le spectre de pression pariétale et donc de réduire le temps de calcul. La méthode est appliquée à des écoulements de couche limite turbulente sur une plaque plane et sur un profil NACA-0012 avec un gradient de pression adverse. / Turbulent boundary layer flows over structures induce vibrations and noise. The latter are estimated by vibro-acoustic studies which require the wavenumber-frequency turbulent wall-pressure spectrum. This spectrum is generally computed via empirical models. However, these models have a very narrow domain of validity and are not adapted for complex flows, in particular with pressure gradients. In this work, a method is proposed to compute space-time wall-pressure correlations from an integral solution of the Poisson equation. The pressure spectrum is obtained by the Fourier transform of these correlations. The expression retained for the pressure correlations involves the derivatives of a Green function as well as the mean velocity field and the Reynolds stresses which are obtained by RANS solutions. It also involves space-time velocity correlation coefficients that have to be modelled. To achieve this, a new model was developed for the spatial correlation coefficients: the Extended Anisotropic Model. To compute the wall-pressure correlations and spectrum, a numerical method based on a self adaptive sampling strategy combined with Kriging is used. It reduces the number of pressure correlation values required to compute the wall-pressure spectrum and thus reduces the computation time. The method is applied to turbulent boundary layer flows over a flat plate and over a NACA-0012 profile with an adverse pressure gradient.
9

DNS of hypersonic turbulent boundary layers: wall pressure fluctuations and acoustic radiation

HUANG, JUNJI 23 September 2022 (has links)
No description available.
10

Non-Intrusive Sensing and Feedback Control of Serpentine Inlet Flow Distortion

Anderson, Jason 23 April 2003 (has links)
A technique to infer circumferential total pressure distortion intensity found in serpentine inlet airflow was established using wall-pressure fluctuation measurements. This sensing technique was experimentally developed for aircraft with serpentine inlets in a symmetric, level flight condition. The turbulence carried by the secondary flow field that creates the non-uniform total pressure distribution at the compressor fan-face was discovered to be an excellent indicator of the distortion intensity. A basic understanding of the secondary flow field allowed for strategic sensor placement to provide a distortion estimate with a limited number of sensors. The microphone-based distortion estimator was validated through its strong correlation with experimentally determined circumferential total pressure distortion parameter intensities (DPCP). This non-intrusive DPCP estimation technique was then used as a DPCP observer in a distortion feedback control system. Lockheed Martin developed the flow control technique used in this control system, which consisted of jet-type vortex generators that injected secondary flow to counter the natural secondary flow inherent to the serpentine inlet. A proportional-integral-derivative (PID) based control system was designed that achieved a requested 66% reduction in DPCP (from a DPCP of 0.023 down to 0.007) in less than 1 second. This control system was also tested for its ability to maintain a DPCP level of 0.007 during a quick ramp-down and ramp-up engine throttling sequence, which served as a measure of system robustness. The control system allowed only a maximum peak DPCP of 0.009 during the engine ramp-up. The successful demonstrations of this automated distortion control system showed great potential for applying this distortion sensing scheme along with Lockheed Martin's flow control technique to military aircraft with serpentine inlets. A final objective of this research was to broaden the non-intrusive sensing capabilities in the serpentine inlet. It was desired to develop a sensing technique that could identify control efforts that optimized the overall inlet aerodynamic performance with regards to both circumferential distortion intensity DPCP and average pressure recovery PR. This research was conducted with a new serpentine inlet developed by Lockheed Martin having a lower length-to-diameter ratio and two flow control inputs. A cost function based on PR and DPCP was developed to predict the optimal flow control efforts at several Mach numbers. Two wall-mounted microphone signals were developed as non-intrusive inlet performance sensors in response to the two flow control inputs. These two microphone signals then replaced the PR and DPCP metrics in the original cost function, and the new non-intrusive-based cost function yielded extremely similar optimal control efforts. / Ph. D.

Page generated in 0.1958 seconds