• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 58
  • 40
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 287
  • 287
  • 88
  • 58
  • 53
  • 50
  • 49
  • 48
  • 46
  • 40
  • 31
  • 31
  • 30
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Nelson's Ridge Subdivision: conservation approach to rural subdivision development

DeNarvaez, Felipe Spencer January 1900 (has links)
Master of Landscape Architecture / Department of Landscape Architecture/Regional and Community Planning / Mary C. Kingery-Page / A 2009 research report by the U.S. Census Bureau and the National Resources Inventory predicts that the developed area in the United States will increase by 54.4 million acres during the next 25 years (McMahon 2010, 2). America’s rural landscape and character is replaced everyday by “placeless” neighborhoods with limited emphasis on conservation efforts. The intent of this report is to demonstrate the benefits of applying conservation design principles to the development of a conservation subdivision in rural Kansas. A 132 acre tract of land, currently known as Nelson’s Ridge, is planned and designed for a subdivision development. The property is located just east of Manhattan, Kansas. The site includes a tributary drainage corridor surrounded by woodlands, existing agriculture fields and upland prairie. It is located no more than a mile from existing amenities of a growing residential and commercial corridor along Highway 24 in Pottawatomie County. The preliminary plat designed by local engineering firm Schwab-Eaton, demonstrates America’s typical or “conventional” approach to subdivision design (Arendt, 1996). The alternative approach is known as a low-impact development or “conservation development” (Gause 2007). After completing a thorough site inventory and analysis, two preliminary designs eventually led to a final conceptual master plan. The two preliminary designs included contemporary and neo-traditional schemes, each portraying conservation principles in alternative ways. Fully understanding the two design alternatives allowed for a balanced and more cohesive final design that incorporated the most positive aspects of both conservation approaches. The preliminary plat and the conservation design were then compared and analyzed in terms of demonstrated design principles and their economic feasibility. This project provides an example for rural subdivision development in Pottawatomie County, Kansas. The project provides decision makers with a conceptual master plan for Nelson’s Ridge that implements conservation subdivision design principles. This project will educate developers, homeowners and the public about design alternatives for subdivision development. The comprehensive analysis of the proposed design will provide important insight into the benefits and limitations of implementing conservation principles into a development.
92

A look into water conservation: an evaluation of landscape water regulations

Schneider, Joseph January 1900 (has links)
Master of Landscape Architecture / Department of Landscape Architecture/Regional and Community Planning / William P. Winslow III / Access to water has always been a critical and often times conflicted issue along Colorado's Front Range. With current and projected population growth in the state of Colorado it can be expected that the importance of the issue will only increase. In order to control future conflicts and costs, communities throughout Colorado have started to update and implement water conservation programs to address demand and delivery issues. A water demand category that has been commonly targeted by community water conservation programs is the designed urban landscape. This study explores the effectiveness of landscape water regulations in urban, landscaped open space as tools for water conservation. The study examines the effectiveness of landscape regulations using three landscape regulations in the city of Colorado Springs. The three landscape regulations represent city and development landscape regulations and guidelines implemented before and after 1998. The effectiveness of the three regulations is measured from the results of four evaluations (regulation composition, landscape design, landscape installation and maintenance, and landscape water use) that represent the steps necessary for the development and maintenance of water efficient landscapes. The tool of measure in the four evaluations is the application and enforcement of the research based Xeriscape principles in the codes, policies, and guidelines found in the three landscape regulations. The results indicated that regulation changes that occurred in the City Landscape Code and Policy Manual in the late 1990's effectively created water conserving landscape regulations. The post 1998 landscape regulations used a diverse combination of water-wise principles that were not only suggested by the codes, policies, and guidelines but also enforced through inspections and submittals. The diversity of water-wise principles in the regulations and the balance of citations and enforcement were the major elements that reduced water use and increased conservation in the evaluated landscape tracts.
93

EVALUATING POTENTIAL FOR FLOATING SOLAR INSTALLATIONS ON ARIZONA WATER MANAGEMENT INFRASTRUCTURE

Hartzell, Tynan Scott January 2016 (has links)
Sustainable Built Environments Senior Capstone Project / This capstone project evaluates the current state of floating solar photovoltaic technology and proposes use of the technology on water management infrastructure in Arizona. The study finds that floating solar photovoltaic has a higher energy density (100 W/m^2) than land-based, utility-scale solar and does not involve significant cost increases. The study proposes and models a small pilot installation on Lake Pleasant Reservoir, part of the Central Arizona Project, and finds that lifetime costs per unit energy are higher than what the Central Arizona Project currently pays for energy, assuming US median per-wattinstalled costs for commercial solar. This cost however does not factor in savings from water conservation, existing infrastructure, reduced land costs, or other benefits. The study recommends water reservoirs by hydropower dams as ideal locations for floating photovoltaic installations. Justified with a significant background on Arizona’s environmental, social, and economic sustainability, as well as regulations calling for increased renewable energy generation and reduced carbon emissions, this study recommends aggressive implementation of floating solar photovoltaic technology within a sustainable development paradigm.
94

The market potential for the floppy sprinkler irrigation system in the global agricultural sector

Breytenbach, Adell 03 1900 (has links)
Thesis (MBA)--Stellenbosch University, 2012. / This research study analyses the market potential for the Floppy Sprinkler irrigation system in the global market. It explores the global irrigation market and its environment to identify the driving forces that influence the industry as well as the potential that Floppy Sprinkler could unleash as a competitor. The researcher assesses the industry value chain to determine the fit and alliance opportunities for Floppy Sprinkler in the value chain. The study further analyses the competitive pressures influencing the competitive environment. Applied research is used in this study to gain a comprehensive understanding of the market. Acknowledged diagnostic models in the field of strategic management were used to guide the study. These included the PESTLE analysis to evaluate the macro-environment of the agriculture sector; the value chain analysis to assess the agricultural industry value chain; Porter’s Five Forces Model to analyse the competitive pressures for Floppy Sprinkler; and the SWOT analysis to identify the strengths, weaknesses, opportunities and threats. The relevant data were collected through both primary and secondary sources. Two questionnaires were designed, the first to industry specialists in the agriculture sector with the purpose to gain insight of the irrigation and agriculture environment; and the second to Floppy Sprinkler irrigation system users, with the purpose to obtain a rating, opinion and relevance of the product in the market. The research disclosed that forces within the macro environment influence the industry significantly. These specifically revolved around climate change, water scarcity, land availability, soil degradation, population growth and changing lifestyles. The value chain analysis revealed that opportunities exist in the agriculture industry to create horizontal and vertical alliances to strengthen Floppy Sprinkler’s position in the market. Competitive pressures in the market include direct competitors of Floppy Sprinkler, as well as the bargaining power of suppliers and buyers. Threat of new entrants and substitute products are not perceived to be immediate competitive pressures for Floppy Sprinkler owing to its cutting-edge technology, which offers a distinctive competitive advantage. Finally, opportunities were identified, which served as recommendations for Floppy Sprinkler in developing its strategy.
95

An Investigation into Water Usage and Water Efficient Design for Persian Gardens

Ansari, Shaghayegh Moalemzadeh January 2015 (has links)
Investigation and research into the Persian Gardens, leading this project into a step that these World Heritage Sites might have been known as sustainable construction, but the fact that water scarcity of their region is a serious threaten for all these amazing Gardens. Thus, enhancing and improving these gardens by merging, adding and adapting todays technologies can make them considered as constructions with water and energy conservation design. Based on nowadays world environment concerns, recognizing renewable and non-renewable sources of energies in a region or site can cause a miracle. Since, almost all Persian Gardens located in regions with arid and semi-arid climate, water poverty as a biggest issue and nonrenewable energy should be included as a problematic concern. There are many available active and passive strategies that can be applied in these heritage sites which decrease water consumption either directly or indirectly. Such as water harvesting, greywater reuse, photovoltaic panels and material changes. Water known as a vital element of each garden for irrigation purposes, but in Persian Garden water is more than a functional element. Thus, finding a way to provide and recycle water beside the underground sources is necessary. Subterranean, springs and wells are resources of water for Persian gardens which renew so slowly or non-renew these days. Being so close to a city with considerable population lunches and idea of using greywater for irrigation in these gardens. In this research, the doable options for energy conservation design for these sites will be discussed, then comparing some case studies in all over world where greywater reusing water system for irrigation is happening will be next step. In conclusion, greywater reusing system in urban scale in order to irrigate a filed or garden will be investigate on a Shazdeh Garden as a main case study of this research.
96

Residential Outdoor Water Use in Tucson, Arizona: Geospatial, Demographic and Temporal Perspectives

Halper, Eve Brook January 2011 (has links)
Outdoor water use by single-family residences in the desert city of Tucson, Arizona is investigated as a multi-scaled coupled human-environment system, using remotely sensed images, GIS data, household water use records and survey responses. Like many desert cities, Tucson's municipal water system faces stresses at multiple spatial and temporal scales: rising demand, limited supplies, competition for distant resources and the likelihood of shortages due to regional climate change. Though the need for demand management is recognized, conflict between the long-term regional scale of the ecosystem that sustains Tucson's water supply and the short-term, local scale of the municipal utility results in a "lack of fit", shown here as the inability to reduce consumption to sustainable levels.While direct regulation of outdoor water use has not been successful, geographic research suggests that modification of the built environment, the focus of the three studies comprising this dissertation, holds promise as a demand management strategy. The first study is a spatial analysis of survey responses on outdoor water use practices during a drought. Next, the potential for substituting common amenities (irrigated landscapes and swimming pools) for private ones is investigated. Residential use was found to be sensitive to park proximity, greenness (proxied by the Normalized Difference Vegetation Index), size and presence of a park pool. Most small parks were net water savers; large parks offered the opportunity to substitute reclaimed water for potable supplies.The last study correlates long-term Landsat-based vegetation and water use trends and integrates these with a spatial analysis of kinetic temperatures. Findings indicate that despite reduced water use, Tucson became greener over the 1995 - 2008 period. This effect is attributed to a pulse of vegetation establishment in response to a shift in the El Niño - Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) around 1976 and to irrigation prior to the study period. I conclude that although the coupled human-environment system of Tucson's municipal water supply and use practices is complex, there are scale-dependent competitive advantages to be gained through thoughtful modification of the built environment.
97

Development of a geographic information system based hydrologic model for stormwater management and landuse planning

Holbert, Sally Beth, 1962- January 1989 (has links)
The HYDROPAC model was developed to improve the technology transfer from the science of hydrology to environmental planning disciplines by initiating advanced spatial analysis techniques for predicting rainfall-runoff relationships. This model integrates the Soil Conservation Service (SCS) equations for calculating runoff and a Geographic Information System (Map Analysis Package) in a framework that allows the simulation of runoff processes over a digital elevation model. The simulations are done in discrete time steps allowing the generation of a hydrograph at any desired point in the watershed and the overland flow patterns are displayed in maps. This framework addresses some of the current limitations of hydrologic model for stormwater management planning in terms of capabilities for analysis and communication of results. This manuscript describes the methods used to develop the framework of the HYDROPAC model and its usefulness for analyzing potential runoff problems during the planning process.
98

Towards an integrated and sustainable water resource monitoring framework in South Africa

Chabalala, Simphiwe January 2017 (has links)
A thesis submitted to the faculty of science, at the University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Doctor of Philosophy. Johannesburg, 2017. / Water resource monitoring plays a pivotal role in a number of sectors such as determining sustainable abstraction and use of water, determining the feasibility of development projects in relation to water, and developing systematic strategies for efficient overall management of the water resources. It has been observed by a number of scholars and policy makers that through periodic monitoring of water resources, valuable data can be collected which can then provide information sufficient to determine trends and develop predictive models. It is only when sound and reliable data is available that informed decisions about sustainable and efficient use of water resources can be made. Despite the importance of water resource monitoring, many countries in Sub-Saharan Africa, particularly in South Africa, are not effectively and adequately monitoring the quantity and quality of water resources. Part of the reason for this state of affairs has been the absence of clearly defined roles, policies, strategies and responsibilities and a combination of these factors have resulted in significant fragmentations in the institutional structures mandated to manage water resources. Using expert sampling, interviews with key informants and other purposively chosen participants, revealed the challenges in the changing political landscape of South African water resource monitoring many of which were further reiterated in the focus group discussions. The identified challenges served as entry points that would improve water resources monitoring and enable decision makers to make sustainable management decisions. It is suggested that water resource monitoring programmes could be used as a tool for sustainable water resource monitoring in South Africa. However, climate change and urbanization bring about a certain level of complexity, uncertainty and conflict as the water landscape of water resources changes continuously. The impact of the above phenomena cannot be measured as current monitoring systems are not functioning optimally. Furthermore, monitoring programmes are not being used to their full potential due to governance challenges. This is due to conflicting roles that the Department of Water and Sanitation (DWS) plays in the water sector i.e. policy developer, supporter and regulator, which in turn confound the roles and responsibilities of its employees. Moreover, it was found that five major challenges impede the formation of a comprehensive water resources management system namely; lack of financial resources, lack of skilled human resources, poor governance structure, ineffective stakeholder engagement – ‘working in silos’ and inefficient data management. More importantly, it was found that sustainability of monitoring programmes relies on human and economic investment. The main recommendations made include institutional reform and enabling legislation which form the basis upon which any development efforts can be pursued to achieve sustainable water resource monitoring. In addition, capacity building and strengthening is recommended as another way to help build sustainable resource management institutions which include skills and institutional memory transfer from the experienced players to the younger and newer employees. The creation and/or optimization of water resource monitoring databases is one of the viable ways for sustainable water resource management to be realized. Furthermore, research can be conducted to assess the challenges in water resource monitoring and provide sustainable solutions; with the aim of quantifying the impact of policy reforms in the water sector. And finally, research can be done on how effective regulation and co-operative governance for water sector can be achieved in South Africa through participatory processes that are aimed at developing priority water research questions. Keywords: water resource monitoring, institutional framework, integrated water resource management, water governance. / GR2018
99

Water consciousness in South Africa: a survey conducted with 10-13 year old learners in Kliptown, Soweto

Von Maravic, Marie Caroline January 2016 (has links)
A report on a research study presented to The Department of Social Work School of Human and Community Development Faculty of Humanities University of the Witwatersrand In partial fulfillment of the requirements for the degree Master of Arts in Social Work March, 2016 / The annual Conference of Parties (COP) held on the 7th-8th of December 2015 made it obvious; the environment is changing and urgent action is needed globally. Globally for the reason that damage done to the environment in one region, may have impacts in other regions. In regards to Africa and in specific South Africa, water as a finite resource is no more available as it was decades ago. This fact needs to be addressed with urgency, as human survival heavily depends on water – especially in Africa (UN Water, 2006). A part of the literature review will be dedicated to challenges related to water and its consequences for the African continent. The core of this study will be to highlight the importance of water for human beings and what can be done to raise awareness. Further, a quantitative study in Kliptown (a suburb area in Soweto suffering from water scarcity); by means of a survey was undertaken to understand more about children’s behavior in regards to water. The purpose of the research was to raise the knowledge of 10-13 year old learners and members of the Kliptown Youth Program (KYP) on the value of water and to assess their awareness on environmental friendliness as well as their daily water management. The intervention took place at Kliptown, with members of the KYP; a nongovernmental organization supporting in lifting children out of poverty. A pre and a post questionnaire was conducted as well as short video clips shown to KYP members, explaining water scarcity and climate change; supported by some recommendations on how to save water in their current environment. Random sampling has been applied to 24 members out of the population of 119 grade 5-7 members, ranging between 10-13 years of age. Respondents were of mixed genders. Data collection of the survey was cross-sectional and has been performed by means of pen-andpaper. The whole intervention with the filling out of the questionnaires, including the video clips and short presentation took about 90 minutes. Data has been interpreted by using descriptive statistics. The outcome provided information on the environmental friendliness of KYP members aged 10-13, their knowledge on the importance of water as well as their pro activeness in regards to the environment and water. Further the study tried to find out whether there is a difference of responses in regards to gender. The outcome of the study will be shared with the Director of KYP to be informed and probably implement recommendations of the study. The outcome of the study revealed that children do not know much about water, however, are interested in knowing and doing more to get acquainted to the topic. / MT2017
100

Redução dos diâmetros de ramais e coletores nos sistemas prediais de esgotos sanitários. / Diameter reduction on drains and main drains of building dranaige system.

Baroni, Bruno Tavares 04 June 2018 (has links)
O aumento da demanda por água potável em função do crescimento populacional, vem sendo objeto de estudo de diversos pesquisadores que buscam meios de otimizar o uso desse recurso. Desse modo, ao longo dos anos os equipamentos sanitários foram sendo aperfeiçoados para tornarem-se mais eficientes. Uma preocupação é o impacto nos ramais e coletores de sistemas prediais de esgotos sanitários, uma vez que os componentes economizadores ao demandarem menos água em sua operação, retornam vazões menores para a rede predial de esgoto sanitário e, consequentemente, geram ondas menores que impactam negativamente na autolimpeza dos condutos horizontais. Nesse sentido, o objetivo da pesquisa foi investigar, em laboratório, as vazões e profundidades da lâmina d´água do escoamento em ramais e coletores do sistema de esgotos sanitários de edifícios residenciais unifamiliares, tendo em vista a redução de diâmetros de 100 mm para 75 mm. A pesquisa foi realizada em laboratório vertical, onde foi montada uma configuração típica de um banheiro residencial, localizada no pavimento superior. Foram utilizadas bacias sanitárias com volume nominal de descarga de 6 L e 4,8 L, um chuveiro com vazão constante de 0,20 L/s e um lavatório com vazão constante de 0,15 L/s. As bacias sanitárias foram ensaiadas para calibração, segundo a NBR 15097 (ABNT, 2011) e ambas obtiveram resultados satisfatórios em todos os requisitos dessa norma. Foram variados os diâmetros dos ramais e coletores prediais de 100 mm para 75 mm, com e sem a contribuição da vazão em regime permanente de 0,35 L/s proveniente de um chuveiro e um lavatório e as declividades variadas em 0%, 1% e 2% nos ramais e 1%, 2% e 3% nos coletores de esgoto. Avaliou-se a influência dos parâmetros declividade, volume de descarga, presença ou não de vazão em regime permanente e diâmetro da tubulação, sobre a velocidade de escoamento da água. Concluiu-se que a redução dos diâmetros dos ramais e coletores de esgoto e a redução do volume de descarga de 6 L para 4,8 L contribuíram para o aumento da velocidade da onda sob as condições de estudo em todo o trecho ensaiado, ou seja, no trecho compreendido entre a bacia sanitária e o tubo de queda e ao longo de todo comprimento de 3 m do coletor de esgoto predial. Não foi estudada a influência da variação dos parâmetros sobre a velocidade de onda em trechos além do coletor de esgoto predial. Sob as condições de estudo, observou-se que a declividade não influencia, de maneira geral, no desempenho do sistema nos trechos ensaiados. A presença de uma vazão em regime permanente contribui para amortizar a energia da onda de descarga da bacia sanitária no ramal de descarga e consequentemente, reduz a velocidade de escoamento da água, o que pode contribuir para a piora do requisito de autolimpeza neste trecho da tubulação. No coletor de esgoto, não foi possível concluir que a presença de vazão em regime permanente tem impacto sobre a velocidade de escoamento da água. Por fim, conclui-se ser possível a redução dos diâmetros dos ramais e coletores do sistema predial de esgoto sanitário. / The increase in the demand for drinking water due to the population growth has been the object of study of several researchers who seek ways to optimize the use of this resource. In this way, over the years sanitary equipment has been improved to become more efficient. One concern is the impact on drains and main drains of building drainage system, since the economizing components, while using less water in their operation, return smaller flows to the sanitary sewage network and consequently lead to the formation of smaller waves that contribute to the self-cleaning of pipes. In this sense, the objective of the research was to investigate, in the laboratory, the flows and the depths of the flow in drains and main drains of residential building drainage system, in order to reduce diameters from 100 mm to 75 mm. The research was carried out in a vertical laboratory, where a typical configuration of a residential bathroom located on the second floor of a two story building was set up. A toilet with a nominal discharge volume of 6 L and 4,8L, a shower with a constant flow rate of 0.20 L/s and a lavatory with a constant flow rate of 0.15 L/s were used. The toilets were tested according to NBR15097 (ABNT, 2011) for calibration and both obtained satisfactory results in all the requirements of this standard. The diameters of the drains and main drains were varied from 100 mm to 75 mm with and without the contribution of the continuous flow rate of 0.35 L/s from a shower and lavatory and the slopes varying in 0%, 1% and 2% in the drains and 1%, 2% and 3% in the main drain. The influence of the parameters like slope, discharge volume, presence or not of continuous flow rate and pipe diameter, on the water flow velocity were evaluated. It was concluded that the reduction of the diameters of the drains and main drains and the reduction of the volume of discharge from 6 L to 4.8 L contribute to the increase of the velocity of the wave in the whole parts of the drain and main drain. It was not studied the influence of the variation of the parameters on the wave velocity on parts beyond the main drain. It was observed that the slope variation does not influence in general performance of the system. The presence of a continuous flow rate contributes to amortize the discharge wave energy from the toilet at the drains and consequently reduces the flow velocity of the water, which may contribute on deterioration of the self-cleaning requirements in this section of the pipeline. In the main drain, it was not possible to conclude that the presence of permanent flow has an impact on the flow velocity of the water.

Page generated in 0.139 seconds