Spelling suggestions: "subject:"water quality -- oregon"" "subject:"water quality -- pregon""
11 |
Assessing Hydrologic and Water Quality Sensitivities to Precipitation Changes, Urban Growth and Land Management Using SWATPsaris, Alexander Michael 05 May 2014 (has links)
Precipitation changes and urban growth are two factors altering the state of water quality. Changes in precipitation will alter the amount and timing of flows, and the corresponding sediment and nutrient dynamics. Meanwhile, densification associated with urban growth will create more impervious surfaces which will alter sediment and nutrient loadings. Land and water managers often rely on models to develop possible future scenarios and devise management responses to these projected changes. We use the Soil and Water Assessment Tool (SWAT) to assess the sensitivities of stream flow, sediment, and nutrient loads in two urbanizing watersheds in Northwest Oregon, USA to various climate and urbanization scenarios. We evaluate the spatial patterns climate change and urban growth will have on water, sediment and nutrient yields. We also identify critical source areas (CSAs) and investigate how implementation of vegetative filter strips (VFS) could ameliorate the effects of these changes. Our findings suggest that: 1) Water yield is tightly coupled to precipitation. 2) Large increases in winter and spring precipitation provide enough sub-surface storage to increase summertime water yields despite a moderate decrease in summer precipitation. 3) Expansion of urban areas increases surface runoff and has mixed effects on sediment and nutrients. 4) Implementation of VFS reduces pollutant loads helping overall watershed health. This research demonstrates the usefulness of SWAT in facilitating informed land and water management decisions.
|
12 |
Turbidity Dynamics during High-Flow Storm Events in the Clackamas River, Oregon 2006-2012Doyle, Micelis Clyde 22 September 2017 (has links)
Turbidity is a useful parameter that can be utilized to help understand the water quality in a river and is an expression of the optical properties of a liquid that cause light rays to be scattered and absorbed rather than transmitted in straight lines. A total of 41 storm events occurring during water years 2006-2012 were analyzed for this study. A hysteresis index (HI) was used to assess the difference in turbidity on the rising and falling limbs of a storm-hydrograph. The upstream Carter Bridge site exhibited a clockwise (C) hysteresis in 38 of 41 storm events and counter-clockwise (CC) hysteresis in three storm events. The downstream Oregon City site exhibited clockwise hysteresis in 29 of 41 storm events and counter-clockwise hysteresis in 12 storm events. Paired t-test comparisons of calculated HI measured during storm events showed that the upstream forested site Carter Bridge had a statistically significant higher HI than the downstream Oregon City site, suggesting that particles that contribute to increasing turbidity and suspended sediment at the upstream site are delivered to the river earlier in the storm event in comparison to the downstream Oregon City site. In contrast particulate matter and suspended sediment was more likely to be higher on the receding limb of the storm hydrograph at the downstream site in comparison to the upstream monitoring location.
Multiple linear regression analysis determined the major hydrological and meteorological controls influencing turbidity over the period of a storm event. The log value of the change (Log ΔQ) in discharge explained 81% of the log value of change in turbidity (Log ΔTb) at Carter Bridge and 48% of the change in turbidity at Oregon City for all storms. Log ΔQ explained 85% and 50% variations of Log ΔTb at Carter Bridge and at Oregon City, respectively in the wet season. Log ΔQ explained 82% of Log ΔTb at Carter Bridge during the Dry Season and together with 3-day antecedent precipitation, Log ΔQ explained 84% of variation in Log ΔTb at Oregon City during the Dry Season. The findings of this study, which offers information about the dynamics that lead to increased turbidity events, could be helpful to researchers, regulatory agencies and water resource managers in maintaining high water quality in rivers.
|
13 |
Water Quality Model for South Slough, Coos Bay, OregonJuza, Holly Kay 05 May 1995 (has links)
The South Slough Estuary is located off Coos Bay along the southern coast of Oregon. It is divided into two channels that meet and continue to Coos Bay at the Charleston Harbor. There are six major contributing streams to South Slough. After rainfall events, the level of coliform bacteria in the slough increases because of stream bacteria loading. This is due to cattle grazing in the drainage areas, failed septic systems from private homes, and sewage sludge applied to the County landfill, which drains into the slough. The Oregon Health Division has enforced a Sanitation Management Plan for Commercial Shellfish Harvesting in South Slough that specifies closure of commercial shellfish harvesting for certain rainfall and flood events. The purpose of this study is to analyze and improve the current understanding of the hydraulics and water quality of the South Slough Estuary. This was achieved by calibrating the South Slough using the water quality model CEQUAL- W2. It was calibrated for the following parameters water surface elevations, velocity, temperature and total dissolved solids. A management analysis was also done analyzing the transport of bacteria and a conservative tracer. Model predictions for water surface elevations at one of the monitoring sites, Hinch Road Bridge, was significantly lower than measured elevations. There was an excellent correlation of velocity, and reasonable timing of peaks due to tidal effects. Model predictions for temperature and total dissolved solids match measured values well. To improve the accuracy of the model the following was recommended; install a raingage in the South Slough, measure temperature and constituent concentrations at inflow locations, survey the S4 current meter, new soundings performed of the Winchester Creek arm and at the Hinch Road Bridge gaging station, and investigate the possibility of an obstruction near the Hinch Road Bridge gaging station.
|
14 |
Oxygen Demand Trends, Land Cover Change, and Water Quality Management for an Urbanizing Oregon WatershedBoeder, Michael Karl 01 January 2006 (has links)
In-stream aquatic habitat depends on adequate levels of dissolved oxygen. Human alteration of the landscape has an extensive influence on the biogeochemical processes that drive oxygen cycling in streams. Historic datasets allow researchers to track trends in chemical parameters concomitant with urbanization, while land cover change analysis allows researchers to identify linkages between water quality trends and landscape change.
Using the Seasonal Kendall's test, I examined water quality trends in oxygen demand variables during the mid-1990s to 2003, for twelve sites in the Rock Creek sub-watershed of the Tualatin River, northwest Oregon. Significant trends occurred in each parameter. Dissolved oxygen (DO (%sat)) increased at five sites. Chemical oxygen demand (COD) decreased at seven sites. Total Kjeldahl nitrogen (TKN) decreased at five sites and increased at one site. Ammonium (NH3-N) decreased at one site and increased at one site. Multiple linear regression indicates that nitrogenous oxygen demand accounts for a significant amount of variance in COD at ten of the twelve sites (adjusted R2values from 0.14 to 0.73).
Aerial photo interpretation revealed significant land cover change in agricultural land cover (-8% for the entire basin area) and residential land cover (+10% for the entire basin area). Correlation results between seasonal oxygen demand data and land cover values at multiple scales indicated that: (I) forest cover negatively influences COD at the full sub-basin scale and positively influences NH3-N at local scales, (2) residential land cover positively influences DO (%sat) values at local scales, (3) agricultural land cover does not influence oxygen demand at any land cover assessment scale, ( 4) local topography negatively influences TKN and NH3-N, and (5) urban runoff management infrastructure correlates positively with COD. Study results indicate that, with the exception of forested land, local scale land cover and landscape variables dominate influence on oxygen demand in the Rock Creek basin. Since DO conditions have improved in these streams, watershed management efforts should emphasize local influences in order to continue to maintain stream health.
|
15 |
Analysis of Oregon's Domestic Well Testing Act data for use in a sentinel surveillance system for private well contaminantsHoppe, Brenda O. 01 May 2012 (has links)
The Safe Drinking Water Act ensures that public systems provide water that meets health standards. However, no such protection exists for millions of Americans who obtain water from private wells. Concern for safety is warranted as most wells draw from underground aquifers, and studies demonstrate that groundwater is affected by a range of contaminants, most often nitrate.
Oregon's Domestic Well Testing Act (DWTA) links well testing to property sales, enabling continuous data collection by the State. This research addresses a need for identifying datasets for characterizing exposure to private well contaminants by evaluating DWTA data for use in a sentinel surveillance system. Validation of DWTA data was accomplished by developing a land use regression (LUR) model based on agricultural nitrogen inputs and soil leachability to predict nitrate concentrations in well water. Geographic information systems (GIS) were used to advance methods for high resolution spatial modeling of fertilizer and manure nitrogen with statewide coverage. Hazard mapping with these datasets suggests that nearly half of recently
drilled wells are susceptible to nitrate contamination. Spearman's rank correlation demonstrated a significant correlation between LUR-predicted nitrate levels and levels reported in the DWTA dataset. These results suggest that DWTA data is valid for use in a sentinel surveillance system, such that evidence of nitrate contamination in a single well may indicate an area-wide health hazard. However, a low fraction of variance explained by the LUR model highlighted the need for specific improvements to datasets crucial for understanding nitrate contamination in well water, including the DWTA. / Graduation date: 2012
|
16 |
Characterization of the Shallow Subsurface Geohydrology of the Ni-les'tun Unit on the Bandon Marsh National Wildlife RefugeBeard, Christopher Madison 24 July 2013 (has links)
The Bandon Marsh is a large marsh restoration project located in southwest Oregon. The land has been previously used for dairy farms and much of the marsh was used for cattle grazing. The goal of the restoration is to recreate a natural habitat for shorebirds and fish. The purpose of this thesis is to gather and analyze data on the geology of the marsh and both ground and surface water quality to evaluate its ability to support biology.
The US Fish and Wildlife Service began restoration on the Bandon marsh in 2005. Research on the Ni-les'tun Unit began in that same year with Geoprobe coring, Ground Penetrating Radar (GPR), piezometer well installation, and surface water analysis. Twelve cores were taken with the Geoprobe in 2006 and later analyzed for this thesis. A total of 50 GPR lines were run across the marsh ranging from ~25 m to 1,200 m in length for a total of about 9,700 meters (9.7 km). The ten piezometer wells were sampled to collect groundwater pH, oxidation-reduction potential, salinity, temperature, and well water elevation. Twelve channel sampling sites were chosen to be sampled in three field runs taking place in winter 2011, summer 2011, and winter 2012. The summer 2011 and winter 2012 sampling runs were done after tide gates had been removed from the marsh.
The Geoprobe core samples were retrieved for extensive lab analysis. Analyses included; bulk density, porosity, permeability, and grain size studies. Lab results revealed a low permeability fine grained upper sedimentary unit ranging from ~0.5 to ~2.5 meters depth with a coarser grained higher permeability lower unit. GPR lines were analyzed for groundwater surface depths and buried channel cut and fill features (Peterson et. al., 2004). GPR results showed a fairly shallow groundwater surface around 0.5 meters in the north down to 2.0 meters in the south.
The piezometer wells showed a seasonal variation in well water elevation with higher elevations in the winter and lower in the summer. Well water chemistry showed both seasonal and spatial variations. Values for pH and dissolved oxygen were lower in the north side of the marsh and higher in the south side, and pH was higher in the summer than in the winter. Wells that were more proximal (within ~400 m) to the Coquille River Estuary showed higher conductivity (salinity) values than those that were more distal (greater than ~400 m).
Channel sampling results showed similar trends as the groundwater results. The lower pH values tended to be in the north side of the marsh as well as lower dissolved oxygen values. Again, there was a spatial variability in conductivity with the higher values found closer to the Coquille River. Conductivity in the channel water showed a great seasonal variability with the highest values occurring in the summer time and much lower values in the winter. As expected, channel water increased about 10°C on average from winter to summer.
The results of all of these observations and analyses are combined to put together a generalized flow model showing the different water inputs into the channel waters on the Ni-les'tun Unit. Once these inputs were derived, conclusions can be made on the quality of the water and its ability to support small aquatic life.
|
17 |
Oregon coastal lake study : phosphorus loading and water quality implicationsBlair, Michael Stuart 18 May 1993 (has links)
A study of phosphorus loading and water quality implications was conducted for
the Oregon coastal lakes. The study was based on existing data for lake total phosphorus
concentrations and for watershed land uses. A phosphorus mass-balance model was
developed to predict lake total phosphorus concentrations from estimated phosphorus
loading from land uses within the lake's watershed. Uncertainty in total phosphorus
concentration estimates are included in the model, and model predictions are considered
to be moderately to highly reliable.
The Oregon coastal lake phosphorus mass-balance model was calibrated from data
for 12 Oregon coastal lakes. Land use phosphorus loading coefficients for forestry, the
coastal dunal aquifer, and precipitation were derived from data specific to the Oregon
coastal region, while other phosphorus loading coefficients were estimated based on
correlations between literature values and Oregon coastal conditions.
The model may be used as an aid for land use management decisions by
estimating water quality effects of projected land use changes. A case study of Mercer
Lake was used to illustrate the model application. / Graduation date: 1994
|
18 |
Modeling Fecal Bacteria in Oregon Coastal Streams Using Spatially Explicit Watershed CharacteristicsPettus, Paul Bryce 16 December 2013 (has links)
Pathogens, such as Escherichia coli and fecal coliforms, are causing the majority of water quality impairments in U.S., making up ~87% of this grouping's violations. Predicting and characterizing source, transport processes, and microbial survival rates is extremely challenging, due to the dynamic nature of each of these components. This research built upon current analytical methods that are used as exploratory tools to predict pathogen indicator counts across regional scales. Using a series of non-parametric methodologies, with spatially explicit predictors, 6657 samples from non-estuarine lotic streams were analyzed to make generalized predictions of regional water quality. 532 frequently sampled sites in the Oregon Coast Range Ecoregion, were parsed down to 93 pathogen sampling sites in effect to control for spatial and temporal biases. This generalized model was able to provide credible results in assessing regional water quality, using spatial techniques, and applying them to infrequently or unmonitored catchments. This model's 56.5% explanation of variation, was comparable to other researchers' regional assessments. This research confirmed linkages to land uses related to anthropogenic activities such as animal operations and agriculture, and general riparian conditions.
|
19 |
The influence of contemporary forest management on stream nutrient concentrations in an industrialized forest in the Oregon CascadesMeininger, William Scott 19 December 2011 (has links)
The increased demand for wood and fiber from a continually shrinking land base has resulted in the use of intensively managed forest plantations. The concentration of timber production on the most suitable sites allows the world's demand for forest products to be met on less land and enable native forests to be conserved. Because much of the water flowing in rivers in the U.S. originates as precipitation in forests, there is a justified concern about the impacts of forest management on water quality.
Nutrient concentrations were measured in eight streams from October 2002 to September 2011 to assess nutrient response to contemporary forest practices at the Hinkle Creek Paired Watershed Study in the Oregon Cascades. This period of time included a two-year pre-treatment calibration between control and treatment watersheds, a fertilization treatment of both basins in October 2004, and a post-treatment period from 2005 to 2011. A treatment schedule comprised of two temporally explicit harvest entries was used to assess the effects of clearcutting at the non-fish-bearing headwater scale and the fish-bearing watershed scale. Stream water samples were analyzed for nitrogen, phosphorus, calcium, sodium, potassium, magnesium, sulfate, chloride, and silicon as well as specific conductance, pH, and alkalinity. Programmable water samplers were used to take water samples during fall
freshets in November 2009 to assess the stream water discharge versus NO₃ + NO₂ concentration relationship.
All treatment watersheds showed a statistically significant increase in NO₃ + NO₂ concentrations after clearcutting (p < 0.001). The slope of the streambed through the disturbance was a stronger predictor of the magnitude of the response than was the magnitude of disturbance. Ammonia and organic nitrogen displayed notable increases after harvest treatment, but these increases were attributed to increases in the control watersheds. Phosphorus showed a response to timber harvest in one headwater stream. The remaining nutrients showed a small decrease in the control and treatment watersheds for the period after harvest. There was some evidence to suggest that the addition of urea nitrogen to both basins may have caused an increase in in-stream biota uptake of these nutrients. The storm response results showed that NO₃ + NO₂ concentrations in stream water increase with discharge during small storms that occur after periods of negligible precipitation.
Concentrations of NO₃ + NO₂ observed during the calibration period were similar to concentrations observed in an old-growth forest in the H.J. Andrews, suggesting that nutrient processing within the Hinkle Creek watershed had returned to levels that existed prior to its initial harvest sixty years ago. This finding helps to assess long-term impacts of shorter rotation timber harvest of regenerated Douglas-fir stands characteristic of industrialized timber harvest in Oregon. / Graduation date: 2012
|
Page generated in 0.1213 seconds