• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 9
  • 8
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 133
  • 133
  • 45
  • 37
  • 28
  • 27
  • 23
  • 22
  • 19
  • 16
  • 16
  • 14
  • 13
  • 13
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Water-based Synthesis of Oxide Semiconductor Fine Particles for Efficient Photocatalyst Systems / 高効率光触媒反応システムのための酸化物半導体微粒子合成プロセスの開発

Okunaka, Sayuri 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19737号 / 工博第4192号 / 新制||工||1646(附属図書館) / 32773 / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 阿部 竜, 教授 陰山 洋, 教授 田中 庸裕 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
72

Application of Metal Nanoparticles and Polyoxometalates for Efficient Photocatalysis and Catalysis / 高効率光触媒および触媒反応のための金属ナノ粒子およびポリオキソメタレートの利用

Iwase, Yukari 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21118号 / 工博第4482号 / 新制||工||1696(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 阿部 竜, 教授 安部 武志, 教授 作花 哲夫 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
73

Study of Novel Metal Oxide Semiconductor Photoanodes for Photoelectrochemical Water Splitting Applications

Poudel, Tilak January 2019 (has links)
No description available.
74

Development of hematite and cupric oxide photoelectrodes for water splitting tandem cells

Cots, Ainhoa 13 September 2019 (has links)
Since the beginning of the Industrial Revolution, the global energy consumption has been continuously increasing, supplied mainly by coal, oil and natural gases. Unfortunately, this consumption is linked to the emission of greenhouse gasses such as CO2 to the atmosphere. For this reason, it is extremely important to look for sustainable and renewable energy sources in order to replace the commonly used fossil fuels. Within the different types of renewable energy sources, solar energy holds by far the largest potential capacity. In this respect, artificial photosynthesis is a promising technology not only to harvest solar energy, but also as a means of storage by producing energy-rich chemical fuels such as H2 from water. The main components of photoelectrochemical water splitting devices are the semiconductor light absorber photoelectrodes and the electrolyte. Chapter 1 reviews the fundamental aspects of photoelectrochemical water splitting and overviews the physics and electrochemistry of semiconductor materials. The second chapter describes the methodologies and techniques employed throughout the thesis. The experimental results are reported from Chapter 3 to 8, focusing on the development and further optimization of two photoelectrodes, concretely hematite and cupric oxide, besides the design and fabrication of tandem cells for standalone water splitting. In the case of hematite photoanodes, the main efforts have focused on its doping to enhance carrier density and mobility as a way of diminishing recombination. The major drawback present in cupric oxide photoelectrodes is their instability against photocorrosion, for this reason, research has focused on protecting them, both by impregnation and adsorption methodologies. Finally, a tandem cell composed by a hematite photoanode and a cupric oxide photocathode was developed. It is worth noting that a polymer electrolyte membrane (PEM) was employed as to facilitate upscaling and diminish the corrosion observed employing the typical acidic or basic liquid electrolytes.
75

STUDIES OF 2D LAYERED MnO2 AND MoS2 FOR ANTIBACTERIAL AND ELECTROCHEMICAL APPLICATIONS

Alimohammadi, Farbod, 0000-0002-5143-2933 January 2020 (has links)
The goal of the dissertation was to optimize synthetic parameters to tune the properties of two layered materials, MoS2 and MnO2 for applications such as antibacterial, energy storage and water remediation. Two aspects of the materials were investigated. Firstly, the synthetic parameters were tuned to prepare material with different morphologies and then the effect of morphology and structure on interaction with bacterial cells was studied. In the second part, the research was focused on tuning the synthetic parameters to improve the intrinsic conductivity of the material for electrocatalytic applications. This dissertation work primarily focuses on understanding the catalytic and antibacterial activity of layered MnO2 and MoS2. One research effort was focused on the antibacterial mode of action of layered nanosheets of MnO2 and MoS2 toward Gram-positive and Gram-negative bacteria. Bacillus subtilis and Escherichia coli bacteria were chosen as model organisms, which were treated individually with randomly oriented and vertically aligned nanosheets. Viability measurements of bacteria, by flow cytometry and fluorescence imaging, showed that vertically aligned MnO2 and MoS2 nanosheets revealed the highest antimicrobial activity and that Gram-positive bacteria showed a higher loss in membrane integrity, compared to Gram-negative bacteria. Moreover, scanning electron microscopy images suggested that the nanosheets compromised the cell wall upon interaction, which led to significant bacterial morphological changes. We propose that the peptidoglycan mesh in the bacterial wall is likely the primary target of the 2D layered nanomaterials. Another focus of the dissertation research investigated the effect of structural and geometrical changes of layered materials on the properties which affect the intrinsic conductivity of material. In the first study, the electrocatalytic activity of layer-by-layer (LbL) deposited 1T'-MoS2 (metallic phase) on a fluorine-doped tin oxide (FTO) substrate was investigated for the hydrogen evolution reaction (HER) as a function of layer number. Conversion of the deposited 1T'-MoS2 to the semiconducting 2H-MoS2 phase via exposure to 532 nm wavelength light, confirmed by Raman spectroscopy and scanning tunneling spectroscopy (STS), allowed a direct comparison of the HER activity of the two phases at a constant mass loading and surface area on the same substrate. The morphology, thickness and roughness of the deposited MoS2 layers as a function of the number of deposition cycles were investigated using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The results showed that the average roughness of the surface increased with the number of deposition cycles, indicating that the thickness of the deposited layered material became heterogeneous with increasing cycle number. For a given number of deposition cycles (i.e., similar mass loading), 1T'-MoS2 exhibited a lower overpotential for the HER than the 2H-MoS2 phase. For example, at a sample thickness of 19.7 ± 2.8 nm (20 LbL cycle) the overpotentials for the HER for 1T'-MoS2 and 2H-MoS2 were 0.54 and 0.61 V, respectively (at a current density of -2 mA/cm2). Overall, the overpotential for HER associated with both MoS2 phases decreased as the mass loading increased. Our study revealed the heterogenous formation of few layer 1T'-MoS2 on the surface, providing a novel approach to improve HER activity towards water splitting applications. A further research effort studied birnessite, focusing on the activity of exfoliated birnessite and the role of birnessite defects for water oxidation. The catalytic activity of layered MnO2 has been studied widely. Birnessite has the lowest oxygen evolution reaction (OER) activity in alkaline media compared to other manganese oxide phases. A motivation for the study was to investigate the OER activity of exfoliated-restacked birnessite sheets which can lead to a better understanding of the birnessite catalytic performance. Synthesized birnessite was exfoliated into monolayer sheets via a cation exchange method. Characterization of the birnessite monolayer sheets using AFM and scanning tunneling microscopy (STM) revealed the presence of the holes and point defects. The phase and conductivity of monolayer sheets were measured by STS. Electrochemical characterizations of exfoliated birnessite have shown that nanosheets of birnessite expose a great number of active sites and exhibit facile electrode kinetics as a result of the defective sheets. In particular, the overpotential of exfoliated birnessite synthesized at 400°C was 450 mV compared to 550 mV for the exfoliated birnessite synthesized at 1000°C. The results indicate that the defective exfoliated sheets have higher conductivity and higher OER activity compared to defect free exfoliated sheets. Additional research of birnessite focused on its activity for the arsenite (i.e., As(III)) oxidation reaction. Birnessite polytypes were synthesized by decomposition of KMnO4 at different temperatures, and three polytypes including two-layer orthogonal (2O), two-layer hexagonal (2H) and three-layer rhombohedral (3R) were identified in the samples. The synthetic temperature controlled the phase formation and heterogeneity of the phases. Birnessite synthesized at 600°C contained 2H/3R phases which showed the highest activity with first order rate constant of the 0.741 h-1 which is 3.6 and 24 times higher than Birnessite synthesized at 800 and 1000°C, respectively. The structural change of the polytype birnessite after As(III) oxidation was studied by pair distribution function experiment. Results indicated that Mn4+ in the birnessite was reduced to Mn3+ and that this reduced species migrated from the in-layer position to the interlayer region. Furthermore, we report the results of in-situ AFM of birnessite sheets exposed to arsenite which provides a detailed understanding of the arsenite oxidation reaction at the birnessite surface. The reductive dissolution of birnessite was shown to be more active on the edges compared to the basal plane of birnessite. Our findings have important implications for material design aimed at removal of arsenite in purification processes. / Chemistry
76

Electroless Deposited Transitional Metal Phosphide for Oxygen/Hydrogen Evolution Reactions

Zhou, Leyao 08 June 2018 (has links)
No description available.
77

Development of Porous Nickel Electro-Catalysts for Photo-Water Splitting Using Zn, Co, Mn and NH4+ Based Precursors

Bidurukontham, Aditya V. January 2011 (has links)
No description available.
78

Dye Sensitization in a Photoelectrochemical Water-Splitting Cell Using N,N'-Bis(3-phosphonopropyl)-3,4,9,10-perylenedicarboximide

Emig, Andrew James 20 September 2012 (has links)
No description available.
79

Zeolite-supported Cobalt Catalysts for Water Oxidation in Artificial Photosynthetic Systems

Del Pilar Albaladejo, Joselyn 26 September 2011 (has links)
No description available.
80

Preparation et performance d'une cellule photocatalytique à base d'hématite pour la génération d'hydrogène

Bouhjar, Feriel 27 July 2018 (has links)
Tesis por compendio / El hidrógeno es un portador de energía que ya ha demostrado su capacidad para reemplazar el petróleo como combustible. Sin embargo, los medios de producción actualmente en uso siguen siendo altamente emisores de gases de efecto invernadero. La foto-electrólisis del agua es un proceso que, a partir de la energía solar, separa los compuestos elementales del agua como el hidrógeno y el oxígeno utilizando un semiconductor con propiedades físicas adecuadas. La hematita (¿-Fe2O3) es un material prometedor para esta aplicación debido a su estabilidad química y su capacidad para absorber una porción significativa de la luz (con una banda prohibida entre 2.0 - 2.2 eV). A pesar de estas propiedades ventajosas, existen limitaciones intrínsecas al uso de óxido de hierro para la descomposición fotoelectroquímica del agua. La primera restricción es la posición de su banda de conducción que es menor que el potencial de reducción de agua. Esta limitación se puede superar mediante la adición en serie de un segundo material, en tándem, que absorberá una parte complementaria del espectro solar y llevar a los electrones a un nivel de energía más alto que el potencial para la liberación de hidrógeno. El segundo obstáculo proviene del desacuerdo entre la corta longitud de difusión de los portadores de carga y la profundidad de penetración larga de la luz. Por lo tanto, es necesario controlar la morfología de los electrodos de hematita en una escala de tamaño similar a la longitud de transporte del orificio. En esta tesis, se introduce un nuevo concepto para mejorar el rendimiento fotoelectroquímico de la hematita. Usando el método hidrotermal depositamos capas delgadas de hematita dopada con Cr en sustratos de vidrio conductivo. También se ha preparado por medios electroquímicos una heterounión del tipo p-CuSCN/n-Fe2O3 depositando secuencialmente una capa de ¿-Fe2O3 y una película de CuSCNsobre sustratos de FTO (SnO2: F).Finalmente, se ha preparado células solares de perovskitas y óxido de hierro. Para ello se depositó una capa delgada, densa y uniformede óxido de hierro (¿-Fe2O3) como capa de transporte de electrones (ETL) en lugar de dióxido de titanio (TiO2) que se utiliza convencionalmente en las células fotovoltaicas perovskitastipoCH3NH3PbI3 (SGP). Este último dispositivo mostró un aumento en la fotocorriente del 20% y un IPCE30 veces mayor que la hematita simple, lo que sugiere una mejor conversión de las longitudes de onda por encima de 500 nm. Palabras clave: Fotoelectroquímica, división de agua, producción de hidrógeno, evolución de oxígeno, semiconductores de óxido de metal, hematita, óxido de hierro, nanoestructuras / Hydrogen is an energy carrier that has already demonstrated its ability to replace oil as a fuel. However, the means of production currently used remain highly emitting greenhouse gases. Photo-electrolysis of water is a process that uses solar energy to separate the elemental compounds of water such as hydrogen and oxygen using a semiconductor with adequate physical properties. Hematite (¿-Fe2O3) is a promising material for this application because of its chemical stability and ability to absorb a significant portion of light (with a band-gap between 2.0 - 2.2 eV). Despite these advantageous properties, there are intrinsic limitations to the use of iron oxide for the photoelectrochemical cracking of water. The first constraint is the position of its conduction band, which is lower than the water reduction potential. This constraint can be overcome by the addition in series of a second material, in tandem, which will absorb a complementary part of the solar spectrum and bring the electrons to a higher energy level than the potential of hydrogen release. The second obstacle comes from the disagreement between the short diffusion length of the charge carriers and the long light penetration depth. It is therefore necessary to control the morphology of the hematite electrodes on a scale of similar size to the transport length of the hole. In this thesis a new concept is introduced to improve the photoelectrochemical performances. Using the hydrothermal method we deposited thin layers of Cr-doped hematite on conductive glass substrates. We also electrochemically prepared a p-CuSCN / n-Fe2O3 heterojunction by sequentially depositing ¿-Fe2O3 and CuSCN films on FTO (SnO2: F) substrates. Finally, we have used uniform and dense thin layers of iron oxide (¿-Fe2O3) as an electron transport layer (ETL) in place of titanium dioxide (TiO2) conventionally used in photovoltaic cells based on perovskites CH3NH3PbI3 (PSC). This latter concept showed a 20% increase of the photocurrent and an IPCE 30 times greater than the simple hematite, suggesting better conversion of high wavelengths (> 500 nm). Keywords: Photoelectrochemistry, Water Splitting, Hydrogen Production, Oxygen Evolution, MetalOxide Semiconductors, Hematite, Iron Oxide, Nanostructures, Surface. / L'hidrogen és un proveïdor d'energia que ja ha demostrat la seva capacitat per reemplaçar el petroli com a combustible, però els mitjans de producció actuals continuen essent fortament emissors dels gasos responsables d'efecte hivernacle. La fotoelectròlisi de l'aigua és un procés que, a partir de l'energia solar, separa els compostos elementals d'aigua com l'hidrogen i l'oxigen utilitzant un semiconductor amb propietats físiques adequades. La hematita (¿-Fe2O3) és un material prometedor per a aquesta aplicació a causa de la seva estabilitat química i capacitat d'absorbir una porció significativa de la llum (amb un gap entre 2,0 i 2,2 eV). Malgrat aquestes propietats avantatjoses, hi ha limitacions intrínseques per a l'ús d'òxid de ferro per a la descomposició fotoelectroquímica de l'aigua. La primera restricció és la posició de la seva banda de conducció que és inferior al potencial de reducció d'aigua. Aquesta limitació es pot superar mitjançant l'addició en sèrie d'un segon material, en tàndem, que absorbirà una part complementària de l'espectre solar i portar els electrons a un nivell d'energia més alt que el potencial per a l'alliberament d'hidrogen. El segon obstacle prové del desacord entre la curta durada de la difusió dels portadors de càrrega i la llarga profunditat de penetració de la llum. Per tant, és necessari controlar la morfologia dels elèctrodes d'hematita en una escala de mida similar a la longitud del forat del transport. En aquesta tesi, es presenta un nou concepte per millorar el rendiment fotoelectroquímic. Mitjançant el mètode hidrotermal es van dipositar capes primes de hematita Cr-doped sobre substrats de vidre conductor. També s'han preparat electroquímicamentheterounions de tipus p-CuSCN/n-Fe2O3 dipositant seqüencialment una capa de ¿-Fe2O3 i altra de CuSCN sobre substrats FTO (SnO2: F).Finalment, s'han produït cél·lules solars de perovskitesi óxid de ferro. Per això es va depositaruna capa prima,densai uniforme d'òxid de ferro (¿-Fe2O3) com a capa de transport d'electrons (ETL) en lloc de diòxid de titani (TiO2) que s'utilitza convencionalment en les cèl·lules fotovoltaiques de perovskita híbrida del tipus CH3NH3PbI3 (SGP). Aquest últim dispositiu va mostrar un augment del fotocorrent del 20% i una IPCE30 vegades superior a la hematita simple, la qual cosa suggereix una millor conversió a longitud d'ones per sobre de 500 nm. Paraules clau:Fotoelectroquímica, divisió d'aigua, producció d'hidrogen, evolució d'oxigen, semiconductors d'òxids metàl·lics, hematita, òxid de ferro, nanoestructures. / Bouhjar, F. (2018). Preparation et performance d'une cellule photocatalytique à base d'hématite pour la génération d'hydrogène [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/106345 / Compendio

Page generated in 0.3325 seconds