Spelling suggestions: "subject:"water utilization"" "subject:"later utilization""
21 |
Constraints on Water Development by the Appropriation Doctrine (invited)Lorah, William L. 20 April 1974 (has links)
From the Proceedings of the 1974 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 19-20, 1974, Flagstaff, Arizona / The doctrine of prior appropriation used in the arid western states has encouraged rapid exploitation of our natural water resources. Those who beneficially used the water first, regardless of type of use or efficiency, obtained a perpetual right to always be first. As frontiers for exploiting our natural resources shrink, the Appropriation Doctrine is changing under the stresses of the 1970's. Our water allocations system is changing as new water -use priorities emerge along with changing quality standards. Government at all levels, along with planners and engineers, must understand the institutional and legal constraints put on water development by our historic water rights system so that intelligent decisions can be made in developing and maintaining our natural water resources.
|
22 |
Water Resource Alternatives for Power Generation in ArizonaSmith, Stephen E., DeCook, K. James, Fazzolare, Rocco A. 20 April 1974 (has links)
From the Proceedings of the 1974 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 19-20, 1974, Flagstaff, Arizona / An examination of potential water sources for power plant cooling in Arizona is presented along with information pertinent to Arizona's future water needs relative to electrical usage growth. It has been projected that Arizona's peak electrical power demands in 1980 and 1990 will exceed that of 1970 by some 5000 megawatts and 16000 megawatts of electricity respectively. At present, the bulk of the electrical energy generated in the western states originates at hydroelectric installations. Utilization of nuclear reactors for power generation requires a larger amount of cooling water than is required for a comparable fossil-fueled plant. It is suggested that the utilization of reclaimed wastewater for cooling purposes is a viable and attractive alternative to groundwater pumpage from both economic and ecological standpoints. Savings arise from conservation of fuel normally required for well pumps, costs of well construction are not required, quantities of fresh water should be released for consumption by alternate users, and a previously unused resource would be effectively recycled.
|
23 |
Root System of Shrub Live Oak in Relation to Water Yield by ChaparralDavis, Edwin A. 16 April 1977 (has links)
From the Proceedings of the 1977 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 15-16, 1977, Las Vegas, Nevada / The root system of shrub live oak (Quercus turbinella) was studied in an initial effort to classify the major Arizona chaparral shrubs as potential users of soil water based on root system characteristics. The root system was of the generalized type with a taproot, many deeply penetrating roots, and a strong lateral root system. Roots penetrated 21 feet to bedrock through cracks and fractures in the rocky regolith. A dense network of small surface laterals radiated from the root crown and permeated the upper foot of soil. Because of its root system, shrub live oak is well adapted to utilize both ephemeral surface soil moisture as well as deeply stored moisture. Emphasis is placed on the importance of a knowledge of the root systems of chaparral shrubs and depth of the regolith in planning vegetation conversions to increase water yield.
|
24 |
Reducing Phreatophyte TranspirationDavenport, David C. 16 April 1977 (has links)
From the Proceedings of the 1977 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 15-16, 1977, Las Vegas, Nevada / Transpiration rates (T) of riparian phreatophytes can be high. Antitranspirant (AT) sprays can curtail T without the ecological imbalance made by eradication. Saltcedar (Tamarix sp.) and cottonwood (Populus sp.) in 15-gal. drums enabled replicated trials on isolated plants or on canopies. T of isolate saltcedar plants could be 2x that of plants in a fairly dense canopy. T for a unit ground area of saltcedar varied from 2.2 (sparse -) to 15.8 (dense-stand) mm/day in July at Davis. Extrapolation of experimental T data to field sites must, therefore, be made carefully. Wax -based ATs increased foliar diffusive resistance (R), and reduced T of saltcedar and cottonwood 32-38% initially and 10% after 3 weeks. R increased naturally in the afternoon when evaporative demand was high and if soil water was low. Nocturnal T of salt cedar was 10% of day T. AT effectiveness increased with a higher ratio of day: night hours, and with lower soil water stress. Therefore, AT will be most effective on long summer days in riparian areas where ground water is available.
|
25 |
Hydrologic Factors Affecting Groundwater Management for the City of Tucson, ArizonaJohnson, R. B. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / Assessment of the basic hydrologic and geologic parameters controlling the occurrence and availability of local groundwater is one of the first steps in formulating any comprehensive water management plan. Each of several parameters must be carefully evaluated both individually and in relation to the other factors which together describe the occurrence and movement of the subsurface water resources. These evaluations are fundamental to the legal and political decision- making framework within which the Water Utility must operate for both short and long-range water management planning. Recent changes in several hydrologic parameters have been observed throughout much of the groundwater reservoir tapped by numerous users in the Tucson Basin. Accelerated water level decline rates, decreasing production capacities of existing wells, increased hydrologic interference and increased demand for water are all having an impact on our water resource. These conditions must be evaluated before basin -wide groundwater management alternatives can be implemented.
|
26 |
Hydrology as a Science?Dvoracek, M. J., Evans, D. D. 06 May 1972 (has links)
From the Proceedings of the 1972 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 5-6, 1972, Prescott, Arizona / Experimental and historical development of the systematic study of water is briefly reviewed to prove hydrology a science. The hydrology program at the university of Arizona is outlined, and details of the course 'water and the environment' are expounded. This introductory course is intended for non-scientific oriented students at this southwestern university. A reading list is provided for the class, and scientifically designed laboratory experiments are developed. The first semester includes discussion of world water inventory; occurrence of water; hydrologic cycle; interaction of oceanography, meteorology, geology, biology, glaciology, geomorphology and soils; properties of water (physical, biological, chemical), and resources development. The second semester discusses municipal, industrial and agricultural water requirements, surface, ground, imported and effluent water resources management; water law; economic, legal, political, and social water resource planning; ecological impact; patterns of use; and survival of man. Mathematical problems are reviewed along with ecological orientation of students.
|
Page generated in 0.11 seconds