• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • Tagged with
  • 15
  • 15
  • 15
  • 9
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The evolution of the Molopo drainage

Bootsman, Cornelis Siebe 16 August 2016 (has links)
A thesis submitted to the Faculty of Science, University of the Witwatersrand, in fulfillment of the requirements for the degree of Doctor of Philosophy. Johannesburg, 1998 / The appearance of the dry Molopo River with its generally wide and shallow valley cut into the Kalahari Group sediments, but more especially its few impressive rock-cut gorges, has intrigued many people over the ages, and led to many theories concerning its history. The rock-cut gorges, in particular, have traditionally been attributed to ancient, previously much more extended drainage lines, more or less in the same geographical position as the present Molopo Valley. An analysis of the sediment body of the Kalahari Group, and both, alluvial gravels and geomorphic features on the rim of the Cainozoic Kalahari Basin, have indicated that the Molopo drainage has gradually shifted westward over time, in response to a tilting of the drainage area, which lies across the south-eastern rim of the Kalahari Basin, The present geographical position of the Molopo River is thus a relatively recent one in its evolution. The earliest traces of drainage lines in the area predate the Permo-Carboniferous glaciation of Gondwana. A preglaciation valley system with only some similarities to the present-one flowed in a northwesterly direction. There is a long hiatus in the evidence from the end of the glaciation to the beginning of the formation of the Calnozoic Kalahari Basin. The most significant feature of that intermediate period, is a large meteorite impact which occurred near Morokweng at the J-K boundary. The Cainozoic evolution of the Molopo drainage has been strongly influenced by both tectonics and climatic change. Tectonics, which include both the initial formation of the Kalahari Basin and Neogene warpings of the intra-continental axes of uplift, caused the interruption of a pre- Kalahari southward flowing drainage system, an extended upper Molopo, the existence of the Molopo as an endoreic system for an extended period of time, and a westward shift of the entire Molopo drainage system. Progressively more arid conditions interrupted by humid climatic pulses of decreasing intensity have occurred since the Cretaceous. The aridifying conditions caused the existence of playa-like conditions over long periods oftime in the back-tilted section of the proto-Molopo. This was followed by a rapid sediment infilling of the sub-basin and a major rejuvenation phase, which caused the incision of the Molopo River into the duricrusted sediments of the Kalahari Group, and the re-establishment of the Molopo River as an exoreic drainage system in its present position. Rock-cut terrace remnants in the upper Molopo give evidence of much smaller climatic changes during the Quaternary. There has been no integrated flow in living memory.
2

Determining the role of catchment geochemistry on the chemistry of water, sediment and fish from impoundments within selected large catchments in South Africa

02 July 2015 (has links)
Ph.D. (Zoology) / The study concept was derived following an information requirement related to the need for the development of a scientifically sound technique to minimize illegal entries at major South African freshwater fishing tournaments. The hypothesis was that fish that are in equilibrium with the environment that they live in should reflect the chemistry of that environment. Therefore it would be possible to chemically link the fish to a specific impoundment and identify whether the fish are indeed from that impoundment or whether they were brought there to be illegally entered at a fishing tournament. The project area consisted of selected lakes within the Vaal, Mgeni, Crocodile (West) and Olifants River catchments in South Africa. The catchments were chosen to contain major sport fishing lakes and to have different sizes, different sources of pollution, different underlying geological compositions and different climates. Soil analyses data from the regional geochemical mapping program of the Council for Geoscience as well as lake sediment and lake water analyses were used to trace chemical elements during weathering, erosion and deposition. This was done to identify unique characteristics that are able to distinguish between water and sediment from individual lakes. It was found that Rb, Sr, Ba, Cu, Ni,Th, Pb, Sc, K, Mg and Ca could be effectively used as single elements or element ratios to distinguish between lakes. Large variation in sediment compositions within individual lakes limited this distinction. Anomalous catchment soil concentrations related to the underlying geology or anthropogenic contamination can however be traced to lake sediments. Rare earth elements are not uniformly distributed in lake sediments or lake waters and sampling localities should be carefully considered when comparing lakes. Leachable soil sulphate distribution patterns from coal mining areas above Lake Witbank and Lake Middelburg extend downstream through Lake Loskop to Lake Arabie (Flag Boshielo). Leachable fluoride, abundant in the Pilanesberg Alkaline Complex extends northwards along rivers draining the complex. The mineralogy of lake sediments was also compared with the major element composition of these sediments as well as with the anion composition of lake water. Genetic rock classification diagrams could be used effectively to show correlations between catchment soil and lake sediment samples both in terms of mineralogy and chemistry. Lake water and fish tissue samples were collected and analysed to investigate the link between element concentrations in lake water and otolith, fin spine, muscle, liver and gill tissues. Using the Sr/Ca elemental ratio, a species-specific correlation was identified between lake water, otolith, spine and gill tissue samples. The best discrimination between fish species was achieved using a Na/Ca versus Mg/Ca elemental ratio diagram of gill tissues. The best discrimination between fish from different lakes was achieved using a Ba/Mg versus Sr/Mg elemental ratio diagram for spine tissue. Sediments from most lakes in the project area showed elevated Hg values during the dry season as well as elevated Hg levels in sediments from the deeper/central part of these lakes. Lake Sterkfontein has a low sediment Hg concentration but contains fish with the highest Hg tissue concentration in the project area. When comparing the Hg distribution in fish muscle and spine tissue from the project area there is a better correlation with species than with location. The Sr isotope ratio of lake water shows a remarkable correlation with the Sr isotope ratio of fish from the same lake. Analytical data showed that fish within a specific lake all have the same Sr isotope ratio in their spines regardless of species, age, sex and condition. The Sr isotope ratio of water generally increases with distance from the source within tertiary catchments and is determined by the prevalent geology of the formations being weathered. In large rivers like the Vaal River where pollution also plays a role the pattern is much more complicated. The Pb isotopic composition of soil samples from Pretoria and the surrounding areas correspond well to the major underlying geological units. Superimposed on this pattern is an anomalous anthropogenic Pb component possibly related to leaded fuel, which extends from the Pretoria city center northwards along the road and railway networks. Water and sediments from Lake Bon Accord and Lake Marais also contain this anthropogenic signature. The hypothesis that fish, which are in equilibrium with the environment that they live in, should reflect the chemistry of that environment, is therefore not rejected since the results of analysing lake water and fish tissues from 23 South African lakes, within 4 major catchments showed definite correlations. Comparing single elements is the least effective method of establishing such correlations. Comparing elemental ratios is a much better method, while comparing isotope ratios is the most effective method.
3

Demographic change in the Upper Tsitsa Catchment: the integration of census and land cover data for 2001 and 2011

Hodgson, Danuta Lorina January 2018 (has links)
The purpose of this research was to determine if the integration of census and land cover data could provide evidence of spatial patterns and temporal change for the Upper Tsitsa Catchment. This thesis contributed to academic literature with regards to dasymetric mapping and provided a database for the Ntabelanga and Laleni Ecological Infrastructure Project. The study took place in the Upper Tsitsa Catchment which is located in the north-eastern region of the Eastern Cape and falls within the uMzimvubu Catchment. South Africa National Population Censuses for 2001 and 2011 and the National Land Cover data sets for 2000 and 2013/14 were used to create dasymetric maps depicting demographic changes over time for the catchment area. Spatial statistics were performed on the dasymetric and choropleth map to determine the accuracy of the data that was created. From the results, it was found that although the statistics were skewed, the method was more accurate in displaying the population densities, which was noted during the sampling process of the spatial analysis. It was found that there had been a decrease in the population density within the catchment. This affected the density of several other variables such as population race group, language and employment status statistics as decreases in these values could be due to individuals migrating out of the catchment as well as socio-economic upliftment, such as having better access to services. The use of dasymetric mapping allowed an accurate representation of the population density from the census data to be created. The results of the dasymetric mapping were more accurate as they depicted where the population within the enumeration areas were located, and recognised that some areas were populated while some areas were not. To conclude, it was found that using dasymetric mapping provided reliable and useful data about population density and enables comparison over time.
4

Real time optimal water allocation in the Orange River catchment in South Africa

Olofintoye, Oluwatosin Onaopemipo January 2015 (has links)
Submitted in fulfillment of the requirements of the degree of Doctor of Engineering: Civil Engineering, Durban University of Technology. Durban. South Africa, 2015. / The planning and management of water resources systems often involve formulation and establishment of optimal operating policies and the study of trade-off between different objectives. Due to the intricate nature of water resources management tasks, several models with varying degrees of complexities have been developed and applied for resolving water resources optimisation and allocation problems. Nevertheless, there still exist uncertainties about finding a generally consistent and trustworthy method that can find solutions which are very close to the global optimum in all scenarios. This study presents the development and application of a new evolutionary multi-objective optimisation algorithm, combined Pareto multi-objective differential evolution (CPMDE). The algorithm combines methods of Pareto ranking and Pareto dominance selections to implement a novel generational selection scheme. The new scheme provides a systematic approach for controlling elitism of the population which results in the simultaneous creation of short solution vectors that are suitable for local search and long vectors suitable for global search. By incorporating combined Pareto procedures, CPMDE is able to adaptively balance exploitation of non-dominated solutions found with exploration of the search space. Thus, it is able to escape all local optima and converge to the global Pareto-optimal front. The performance of CPMDE was compared with 14 state-of-the-art evolutionary multi-objective optimisation algorithms. A total of ten test problems and three real world problems were considered in the benchmark of the algorithm. Findings suggest that the new algorithm presents an improvement in convergence to global Pareto-optimal fronts especially on deceptive multi-modal functions where CPMDE clearly outperformed all other algorithms in convergence and diversity. The convergence metric on this problem was several orders of magnitude better than those of the other algorithms. Competitive results obtained from the benchmark of CPMDE suggest that it is a good alternative for solving real multi-objective optimisation problems. Also, values of a variance statistics further indicate that CPMDE is reliable and stable in finding solutions and converging to Pareto-optimal fronts in multi-objective optimisation problems. CPMDE was applied to resolve water allocation problems in the Orange River catchment in South Africa. Results obtained from the applications of CPMDE suggest it represents an improvement over some existing methods. CPMDE was applied to resolve water allocation problems in the agricultural and power sectors in South Africa. These sectors are strategic in forging economic growth, sustaining technological developments and contributing further to the overall development of the nation. They are also germane in capacitating the South African government’s commitment towards equity and poverty eradication and ensuring food security. Harnessing more hydropower from existing water sources within the frontier of the country is germane in capacitating the South African Government’s commitment to reduction of the countries’ greenhouse gas emissions and transition to a low-carbon economy while meeting a national target of 3 725 megawatts by 2030. Application of CPMDE algorithm in the behavioural analysis of the Vanderkloof reservoir showed an increase of 20 310 MWH in energy generation corresponding to a 3.2 percent increase. On analysis of storage trajectories over the operating period, it was found that the real time analysis incorporating a hybrid between CPMDE and ANN offers a procedure with a high ability to minimize deviation from target storage under the prevailing water stress condition. Overall, the real time analysis provides an improvement of 49.32 percent over the current practice. Further analysis involving starting the simulation with a proposed higher storage volume suggests that 728.53 GWH of annual energy may be generated from the reservoir under medium flow condition without system failure as opposed to 629 GWH produced from current practice. This corresponds to a 13.66 percent increase in energy generation. It was however noted that the water resources of the dam is not in excess. The water in the dam is just enough to meet all current demands. This calls for proper management policies for future operation of the reservoir to guard against excessive storage depletions. The study herein also involved the development of a decision support system for the daily operation of the Vanderkloof reservoir. This provides a low cost solution methodology suitable for the sustainable operation of the Vanderkloof dam in South Africa. Adopting real time optimisation strategies may be beneficial to the operation of reservoirs. Findings from the study herein indicate that the new algorithm represents an improvement over existing methods. Therefore, CPMDE presents a new tool that nations can adapt for the proper management of water resources towards the overall prosperity of their populace. / D
5

A comparative microbiological assessment of river basin sites to elucidate fecal impact and the corresponding risks

Sithebe, Ayanda January 2017 (has links)
Submitted in partial fulfillment for the Degree of Master of Applied Sciences in Biotechnology, Durban University of Technology, Durban, South Africa, 2017. / The study aims to assess and compare the concentration of microbial contaminants, their sources and distribution in surface water and sediment, and to determine the impact of seasonal variations and corresponding risks of faecal contamination using conventional and molecular methods. Historical data analysis was conducted using E. coli values from the eThekwini Water and Sanitation (EWS) department for 66 months (2009-2014). E. coli and Enterococci were analysed in surface water and sediment samples using the mFC/ spread plate and Colilert-18 (IDEXX) methods. The impact of seasonal variations was assessed using E. coli and Enterococci data collected during rainfall and no rainfall events, using an auto-sampler and sediment trap in parallel. Conventional standard membrane filtration methods using mFC agar, Slanetz & Bartley/ Bile Esculin and Brilliance E. coli selective agar were compared to the enzymatic Colilert-18 and Enterolert (IDEXX) test methods along the Isipingo and Palmiet Rivers. In addition, comparison of the analytical performance of droplet digital PCR (ddPCR) and qPCR for the detection of Salmonella targeting ttr gene in river sediment samples collected from the four sites of the Palmiet River in Durban, South Africa was done. In order to assess the public health risk associated with exposure of men, women and children to microbial pathogens in polluted surface water during recreational activities, the QMRA tool was employed in relation to the risk exposure to pathogenic E. coli, Campylobacter, Salmonella and Shigella. Also, the risk associated with crop irrigation (on farmers) as well as the consumption of crops irrigated with surface water from the Isipingo river was determined. Analysis of the historical data gave a baseline of the two rivers of interest, thus helps understand the current situation of the rivers enabling researchers to pick up potential gaps. In this study after the analysis of the historical data it was evident that at the Palmiet river, microbial analysis must be conducted around the QRI settlements which is a major pollution source. Also, from this study it was found that sampling points situated close to wastewater treatment plants, pump stations or informal settlements were of major concern, thus were considered for the study. It was found that sediment exhibited higher microbial concentrations than surface water, which was observed in both rivers. Also, rainfall had a significant impact on microbial variability. Higher microbial concentrations (indicator organisms) were observed in surface water after a heavy rainfall as appose to when there was no rainfall. This was due to contamination that is washed off into the river and sediment resuspension. Methodology comparison revealed that Colilert-18 and Brilliance E. coli were more selective compared to mFC agar. Brilliance E. coli /Coliform agar was comparable with Colilert-18 IDEXX, which was also observed with Slanetz & Bartley and Enterolert IDEXX. However, when mFC agar was compared with Colilert-18 IDEXX, significant difference was observed. In comparison of two Molecular methods, ddPCR were found to be fully amenable for the quantification of Salmonella and offer robust, accurate, high-throughput, affordable and more sensitive quantitation than qPCR in complex environmental samples like sediments. Quantitative Microbial Risk Assessment (QMRA) relating to recreational and occupational exposure showed that children were at the highest risk of getting infected. Also, it was observed that the probability of infection upon exposure to surface water from the Isipingo and Palmiet rivers was significantly high, hence exceeded the WHO guidelines values. Risk assessment on crops revealed that pathogenic bacteria may pose a risk to the consumer, however, a 9-log reduction may be achieved according to the WHO multi-barrier approach which involves proper washing and proper cooking of the crop before ingestion. Overall the sampling points that had the highest pollution level and constantly exceeded the WHO and DWAF guidelines at the Isipingo river were the points situated and named “Next to the WWTP”, and “Downstream of QRI” at the Palmiet River. / M
6

Seasonal exposure in the form of precipitation and its effect on water quality for the Roodeplaat dam drainage basin : 2000-2009

Lomberg, Nicole Janet 11 February 2014 (has links)
M.Sc. (Environmental Management) / The main purpose of this study is to determine whether trends in rainfall patterns correlate to trends in water quality constituents for the Roodeplaat Dam Drainage Basin, thereby increasing the ‘dilution capacity’ potential of the aforementioned water system. The Roodeplaat Dam (reservoir) is a hypertrophic impoundment located approximately 20 kilometres north-east of Pretoria. The dam was originally designed for irrigational purposes and later became an important recreational site. In recent years it serves as an important source for Magalies Water, which represents a state-owned water board that currently supplies potable water to a large area north of Pretoria. The Roodeplaat Dam catchment consists of three contributing rivers to the inflow of the impoundment, namely: The Pienaars River (located in the centre of the catchment), the Edendale Spruit (east of the catchment) and the Moreleta/Hartebees Spruit (west of the catchment). There are also two Water Care Works (Zeekoegat and Baviaanspoort) within the catchment, which supplement additional inputs of treated effluent discharges to the reservoir. Temporal changes in selected physical, chemical and microbial constituents were analysed at established sampling points along each river, including a sample site located at the dam wall outlet. Such changes in water quality, in conjunction with rainfall patterns exhibited in the study area were analysed to determine whether an association exists between the two variables, and more specifically how rainfall impacts on water quality within the catchment which has a direct effect on the quality of the Roodeplaat Dam. Data for rainfall and water quality were analysed over a 10 year period, from January 1999 to December 2009. Water quality sampling results were obtained from the Department of Water Affairs. Rainfall data for the same time period in question was obtained from the South African Weather Service. Results for both variables were projected graphically and collated to determine whether rainfall trends have an impact on concentrations of water quality constituents. Constituent concentrations were also compared at each sample site. To quantitatively justify graphical results, the author preformed Pearson’s and Spearman’s correlation analysis to establish whether rainfall and water quality concentrations displayed significant associations. Results from graphical presentations and quantitative analyses identified that a correlation does exist between rainfall and water quality constituents, whereby an increase in rainfall tends to result in a decrease of water quality constituent concentrations. Microbial constituents contrasted to physical and chemical results, and displayed a strong positive correlation to rainfall. Rainfall therefore increases the ‘dilution capacity’ potential of the catchment, whereby the water system increases in its ability to receive and remove pollutants disposed in them by human induced land-use activities. It was also found from the study that the strength and association between rainfall and water quality constituents is affected by external, anthropogenic variables which also exert an influence on the quality of water present in the Roodeplaat Catchment Area. This includes additional inputs from the Baviaanspoort, which is located along the Pienaars River. Results from the sample site located on this river displayed no relationship for many of the water quality constituents tested. It has also been highlighted from the study how the landscape has been severely altered by the rapid rate of human induced land use activities in the past decade. Further investigations need to incorporate the influences of natural phenomena, such as rainfall, together with influences exerted from anthropogenic activities. This will provide clearer information on the interdependent factors at play which compromise the dilution capacity potential of the Roodeplaat Catchment Area and subsequently the poor water quality status exhibited at the impoundment. Once such externalities are accounted for, it is recommended that a suitable management plan be conducted for the Roodeplaat Catchment Area that is based on scientific grounding and proactively mitigates the impacts exuded by land-use activities, thereby improving the status of the Roodeplaat impoundment.
7

Understanding and modelling of surface and groundwater interactions

Tanner, Jane Louise January 2014 (has links)
The connections between surface water and groundwater systems remain poorly understood in many catchments throughout the world and yet they are fundamental to effectively managing water resources. Managing water resources in an integrated manner is not straightforward, particularly if both resources are being utilised, and especially in those regions that suffer problems of data scarcity. This study explores some of the principle issues associated with understanding and practically modelling surface and groundwater interactions. In South Africa, there remains much controversy over the most appropriate type of integrated model to be used and the way forward in terms of the development of the discipline; part of the disagreement stems from the fact that we cannot validate models adequately. This is largely due to traditional forms of model testing having limited power as it is difficult to differentiate between the uncertainties within different model structures, different sets of alternative parameter values and in the input data used to run the model. While model structural uncertainties are important to consider, the uncertainty from input data error together with parameter estimation error are often more significant to the overall residual error, and essential to consider if we want to achieve reliable predictions for water resource decisions. While new philosophies and theories on modelling and results validation have been developed (Beven, 2002; Gupta et al., 2008), in many cases models are not only still being validated and compared using sparse and uncertain datasets, but also expected to produce reliable predictions based on the flawed data. The approach in this study is focused on fundamental understanding of hydrological systems rather than calibration based modelling and promotes the use of all the available 'hard' and 'soft' data together with thoughtful conceptual examination of the processes occurring in an environment to ensure as far as possible that a model is generating sensible results by simulating the correct processes. The first part of the thesis focuses on characterising the 'typical' interaction environments found in South Africa. It was found that many traditional perceptual models are not necessarily applicable to South African conditions, largely due to the relative importance of unsaturated zone processes and the complexity of the dominantly fractured rock environments. The interaction environments were categorised into four main 'types' of environment. These include karst, primary, fractured rock (secondary), and alluvial environments. Processes critical to Integrated Water Resource Management (IWRM) were defined within each interaction type as a guideline to setting a model up to realistically represent the dominant processes in the respective settings. The second part of the thesis addressed the application and evaluation of the modified Pitman model (Hughes, 2004), which allows for surface and groundwater interaction behaviour at the catchment scale to be simulated. The issue is whether, given the different sources of uncertainty in the modelling process, we can differentiate one conceptual flow path from another in trying to refine the understanding and consequently have more faith in model predictions. Seven example catchments were selected from around South Africa to assess whether reliable integrated assessments can be carried out given the existing data. Specific catchment perceptual models were used to identify the critical processes occurring in each setting and the Pitman model was assessed on whether it could represent them (structural uncertainty). The available knowledge of specific environments or catchments was then examined in an attempt to resolve the parameter uncertainty present within each catchment and ensure the subsequent model setup was correctly representing the process understanding as far as possible. The confidence in the quantitative results inevitably varied with the amount and quality of the data available. While the model was deemed to be robust based on the behavioural results obtained in the majority of the case studies, in many cases a quantitative validation of the outputs was just not possible based on the available data. In these cases, the model was judged on its ability to represent the conceptualisation of the processes occurring in the catchments. While the lack of appropriate data means there will always be considerable uncertainty surrounding model validation, it can be argued that improved process understanding in an environment can be used to validate model outcomes to a degree, by assessing whether a model is getting the right results for the right reasons. Many water resource decisions are still made without adequate account being taken of the uncertainties inherent in assessing the response of hydrological systems. Certainly, with all the possible sources of uncertainty in a data scarce country such as South Africa, pure calibration based modelling is unlikely to produce reliable information for water resource managers as it can produce the right results for the wrong reasons. Thus it becomes essential to incorporate conceptual thinking into the modelling process, so that at the very least we are able to conclude that a model generates estimates that are consistent with, and reflect, our understanding (however limited) of the catchment processes. It is fairly clear that achieving the optimum model of a hydrological system may be fraught with difficulty, if not impossible. This makes it very difficult from a practitioner's point of view to decide which model and uncertainty estimation method to use. According to Beven (2009), this may be a transitional problem and in the future it may become clearer as we learn more about how to estimate the uncertainties associated with hydrological systems. Until then, a better understanding of the fundamental and most critical hydrogeological processes should be used to critically test and improve model predictions as far as possible. A major focus of the study was to identify whether the modified Pitman model could provide a practical tool for water resource managers by reliably determining the available water resource. The incorporation of surface and groundwater interaction routines seems to have resulted in a more robust and realistic model of basin hydrology. The overall conclusion is that the model, although simplified, is capable of representing the catchment scale processes that occur under most South African conditions.
8

Investigating integrated catchment management using a simple water quantity and quality model : a case study of the Crocodile River Catchment, South Africa

Retief, Daniel Christoffel Hugo January 2015 (has links)
Internationally, water resources are facing increasing pressure due to over-exploitation and pollution. Integrated Water Resource Management (IWRM) has been accepted internationally as a paradigm for integrative and sustainable management of water resources. However, in practice, the implementation and success of IWRM policies has been hampered by the lack of availability of integrative decision support tools, especially within the context of limited resources and observed data. This is true for the Crocodile River Catchment (CRC), located within the Mpumalanga Province of South Africa. The catchment has been experiencing a decline in water quality as a result of the point source input of a cocktail of pollutants, which are discharged from industrial and municipal wastewater treatment plants, as well as diffuse source runoff and return flows from the extensive areas of irrigated agriculture and mining sites. The decline in water quality has profound implications for a range of stakeholders across the catchment including increased treatment costs and reduced crop yields. The combination of deteriorating water quality and the lack of understanding of the relationships between water quantity and quality for determining compliance/non-compliance in the CRC have resulted in collaboration between stakeholders, willing to work in a participatory and transparent manner to create an Integrated Water Quality Management Plan (IWQMP). This project aimed to model water quality, (combined water quality and quantity), to facilitate the IWQMP aiding in the understanding of the relationship between water quantity and quality in the CRC. A relatively simple water quality model (WQSAM) was used that receives inputs from established water quantity systems models, and was designed to be a water quality decision support tool for South African catchments. The model was applied to the CRC, achieving acceptable simulations of total dissolved solids (used as a surrogate for salinity) and nutrients (including orthophosphates, nitrates +nitrites and ammonium) for historical conditions. Validation results revealed that there is little consistency within the catchment, attributed to the non-stationary nature of water quality at many of the sites in the CRC. The analyses of the results using a number of representations including, seasonal load distributions, load duration curves and load flow plots, confirmed that the WQSAM model was able to capture the variability of relationships between water quantity and quality, provided that simulated hydrology was sufficiently accurate. The outputs produced by WQSAM was seen as useful for the CRC, with the Inkomati-Usuthu Catchment Management Agency (IUCMA) planning to operationalise the model in 2015. The ability of WQSAM to simulate water quality in data scarce catchments, with constituents that are appropriate for the needs of water resource management within South Africa, is highly beneficial.
9

Hydrological Characterisation of the Shingwedzi and Mphongolo River Basins in Kruger National Park, South Africa

Ramusiya, Fhedzisani 01 1900 (has links)
MESHWR / Department of Hydrology and Water Resources / See the attached abstract below
10

Sediment linkages in a small catchment in the Mount Fletcher southern Drakensberg region, South Africa

Mzobe, Pearl Nonjabulo January 2014 (has links)
Soil erosion is a persistent problem that requires continued control efforts as agricultural land loses productivity and communities dependent on the land become increasingly vulnerable to decreased food security. The negative effects of soil erosion in Khamopele River catchment, in the Mount Fletcher southern Drakensberg region of South Africa, are manifest in extensive gullying and wetland loss. Soil erosion has resulted in siltation in a recently constructed dam and the alteration of aquatic habitats. This research was undertaken to identify the sources of eroded sediment in the small upper catchments of the Mzimvubu River catchment to inform broader catchment management strategies. The scale of erosion was quantified using field surveys of gully extent and form. Environmental magnetic tracing techniques were used to determine the sources of eroded sediment in Khamopele River and upper Tina River catchments. The radionuclide ¹³⁷Cs was used to determine soil loss over a 55 year period in Khamopele River catchment. The Landscape Connectivity framework was used to describe the sediment source, pathway and sink interactions at sample area level. Results indicated that historical and contemporary land management practices such as uncontrolled grazing, grassland burning and furrows promoted soil erosion in the catchment. Soil erosion was most pronounced in the Taung sample area where there was extensive gullying, tunnelling and subsurface erosion. Environmental magnetic tracing results indicated that there were clear differences in source areas. Despite its prevalence in the area, gully erosion was not shown to be a major source of sediment to downstream sinks. Topsoil and hillslope derived sediment were shown to be mobile in the catchment, suggesting that sheet erosion processes were dominant in the catchment. Radionuclide tracing studies showed that at least 20 cm of soil had been eroded from the Khamopele River catchment surface since 1956. This research has shown that it is possible to distinguish source areas of erosion in the catchment by matching catchment mineral magnetic signatures to those in sink areas. This means that rehabilitation projects can use resources efficiently as the areas needing the most attention can be identified.

Page generated in 0.0895 seconds