Spelling suggestions: "subject:"have finite element"" "subject:"wave finite element""
1 |
Approche couplée propagative et modale pour l'analyse multi-échelle des structures périodiques / Wave and modal approach for multi-scale analysis of periodic structuresZhou, Changwei 10 December 2014 (has links)
La dynamique d’une structure peut être vue aussi bien en termes de modes (ondes stationnaires) qu’en termes d’ondes élastiques libres. Les approches modales sont largement utilisées en mécanique et de nombreuses techniques de réduction de modèles (Model Order Reduction - MOR) ont été développées dans ce cadre. Quant à la dynamique des structures périodiques, les approches propagatives sont majoritairement utilisées, où la périodicité est exploitée en utilisant la théorie de Bloch. Pour les structures périodiques complexes, plusieurs techniques MOR sur la base d’onde ont été proposées dans la littérature. Dans ce travail, une approche couplée propagative et modale a été développée pour étudier la propagation des ondes dans les structures périodiques. Cette approche commence par la description modale d’une cellule unitaire (échelle mésoscopique) en utilisant la synthèse modale (Component Mode Synthesis - CMS). Par la suite, la méthode propagative - Wave Finite Element Method (WFEM) est appliquée sur la structure (échelle macroscopique). Cette méthode est nommée “CWFEM” pour CondensedWave Finite Element Method. Elle combine les avantages de la CMS et WFEM. La CMS permet d’analyser le comportement local d’en extraire une base réduite. La WFEM exploite la périodicité de la structure d’en extraire les paramètres de propagation. Ainsi, l’analyse de la propagation des ondes dans la structure à l’échelle macroscopique peut être réalisée en prenant en compte l’échelle mésoscopique. L’efficacité de la CWFEM est illustrée par de nombreuse applications aux structures périodiques monodimensionnelle (1D) et bidimensionnelle (2D). Le critère de réduction optimale assurant la convergence est discuté. Les caractéristiques de propagation dans les structures périodiques sont identifiées: bande passante, bande interdite, la directivité marquée (wave beaming effects), courbe de dispersion, band structure, surface des lenteurs... Ces propriétés peuvent répondre au besoin de conception des barrières vibroacoustiques, pièges à ondes. La CWFEM est ensuite appliquée pour étudier la propagation des ondes dans des plaques perforées et plaques raidies. Une méthode d’homogénéisation pour déterminer le modèle équivalent de la plaque perforée est proposée. Les comportements à haute fréquence tels que la directivité marquée sont également prédits par CWFEM. Trois modèles de plaques avec perforations différentes sont étudiées dans ce travail. Une validation expérimentale est effectuée sur deux plaques. Pour la plaque raidie, l’influence des modes internes sur la propagation globale est discutée. La densité modale est estimée, en moyenne et haute fréquences, pour une plaque raidie finie, où une bonne corrélation est obtenue en comparant les résultats à l’issue des analyses modales. / Structural dynamics can be described in terms of structural modes as well as elastic wave motions. The mode-based methods are widely applied in mechanical engineering and numerous model order reduction (MOR) techniques have been developed. When it comes to the study of periodic structures, wave description is mostly adopted where periodicity is fully exploited based on the Bloch theory. For complex periodic structures, several MOR techniques conducted on wave basis have been proposed in the literature. In this work, a wave and modal coupled approach is developed to study the wave propagation in periodic structures. The approach begins with the modal description of a unit cell (mesoscopic scale) using Component Mode Synthesis (CMS). Subsequently, the wave-based method -Wave Finite Element Method (WFEM) is applied to the structure (macroscopic scale). The method is referred as “CWFEM” for Condensed Wave Finite Element Method. It combines the advantages of CMS and WFEM. CMS enables to analyse the local behaviour of the unit cell using a reduced modal basis. On the other hand, WFEM exploits fully the periodic propriety of the structure and extracts directly the propagation parameters. Thus the analysis of the wave propagation in the macroscopic scale waveguides can be carried out considering the mesoscopic scale behaviour. The effectiveness of CWFEM is illustrated via several one-dimensional (1D) periodic structures and two-dimensional (2D) periodic structures. The criterion of the optimal reduction to ensure the convergence is discussed. Typical wave propagation characteristics in periodic structures are identified, such as pass bands, stop bands, wave beaming effects, dispersion relation, band structure and slowness surfaces...Their proprieties can be applied as vibroacoustics barriers, wave filters. CWFEM is subsequently applied to study wave propagation characteristics in perforated plates and stiffened plate. A homogenization method to find the equivalent model of perforated plate is proposed. The high frequency behaviours such as wave beaming effect are also predicted by CWFEM. Three plate models with different perforations are studied. Experimental validation is conducted on two plates. For the stiffened plate, the influence of internal modes on propagation is discussed. The modal density in the mid- and high- frequency range is estimated for a finite stiffened plate, where good correlation is obtained compared to the mode count from modal analysis.
|
2 |
Approche numérique pour le calcul de la matrice de diffusion acoustique : application pour les cas convectifs et non convectifs / A numerical approach for the calculation of the acoustical scattering matrix : application for the convective and the non-convective casesKessentini, Ahmed 01 July 2017 (has links)
La propagation acoustique guidée est étudiée dans ce travail. La propagation des ondes acoustiques dans une direction principale est privilégiée. La méthode des éléments finis ondulatoires est donc exploitée pour extraire les nombres d'ondes. Les déformées des différents modes de conduit rigide sont aussi obtenues. Pour des conduits avec des discontinuités d'impédance, la matrice de diffusion peut être calculée à l'aide d'une modélisation par éléments finis de la partie traitée acoustiquement. Une modélisation tridimensionnelle des conduits traités acoustiquement permet une étude de la propagation pour tous les ordres des modes, de leur diffusion et du comportement acoustique des matériaux absorbants. Les réponses forcées de diverses configurations de guides d'ondes aux conditions aux limites imposées sont également calculées. L'étude est finalement étendue à la propagation acoustique dans les guides d'ondes avec un écoulement moyen uniforme. / The guided acoustical propagation is investigated in this work. The propagation of the acoustic waves in a main direction is privileged. A Wave Finite Element method is therefore exploited to extract the wavenumbers. Rigid duct's mode shapes are moreover obtained. For ducts with impedance discontinuities, the scattering matrix can be then calculated through a Finite Element modelling of the lined part. A three dimensional modelling of the lined ducts allows a study of the propagation for the full modes orders, their scattering and the acoustic behaviour of the absorbing materials. The forced responses of various configurations of waveguides with imposed boundary conditions are also calculated. The study is finally extended to the acoustical propagation within waveguides with a uniform mean flow.
|
3 |
Multi-modal propagation through finite elements applied for the control of smart structures / Propagation multimodale par éléments finis appliquée au contrôle de structures intelligentesHuang, Tianli 20 November 2012 (has links)
Le sujet de thèse concerne l’analyse de la propagation des ondes dans les structures complexes et leurs exploitations pour le contrôle semiactif et le contrôle de santé de structures intelligentes. Les structures composites munies de patches piézoélectriques sont la cible principale des investigations. Les patches piézoélectriques sont disposés avec une périodicité. Des travaux précédents ont montré l’intérêt de ce type de configuration pour l’amortissement actif de modes de structures en basses fréquences. L’objectif principal de cette thèse est l’extension de ces constatations dans une bande de fréquences plus large : basses et moyennes fréquences. La maîtrise des paramètres de propagation et de diffusion des ondes est la finalité recherchée. Dans ce cadre, les travaux proposés se baseront sur une technique particulière développée au sein de l’équipe Dynamique des Systèmes et des Structures: la technique WFE (Wave Finite Element), Ondes par éléments finis. Cette approche, construite à l’aide d’un modèle éléments finis d’une cellule représentative de l’essentiel des paramètres de propagation et de diffusion des ondes dans les structures. Elle a été validée sur des cas simples de structures, principalement isotrope monodimensionnel. La modélisation dans ce cas des sandwichs plaques composites munies de couches piézoélectriques sera opérée. Des simulations numériques poussées seront effectuées afin de cerner le cadre d’application de la WFE pour ce type de structures. Des optimisations pourront être réalisées avec ces outils numériques afin d’obtenir des paramètres géométriques et électriques optimaux dans la conception des structures intelligentes. Les travaux de cette thèse sont intégrés dans le projet CALIOP en collaborant avec le laboratoire de Mécanique Appliquée R.Chaléat de l’Institut FEMTOSTet G.W. Woodruff School of Mechanical Engineering de Georgia Institute of Technology. / The analysis of wave propagation in complex structures and its application for the semi-active control of smart structures and health monitoring of these structures are dealt with in this thesis. The design of composite structures with shunted piezoelectric patches is one of the main objectives of all the investigations. This kind of smart composite structures is equipped with periodically distributed shunted piezoelectric patches. Former studies have shown the great interest of such a configuration for the active damping of structural modes at low frequencies. This thesis is focused on the extension of all these interesting characteristics of the smart structures to a larger frequency band: low and medium frequencies. The mastering of the propagation parameters and energy diffusion characteristics is targeted. In this context, the proposed work is based on techniques specifically developed in the research team "Dynamics of Systems and Structures"(D2S): the Wave Finite Element (WFE) method and Diffusion Matrix Model(DMM). The WFE approach is constructed via the finite element model of a unit cell, representative of the waveguide structure. It enables the calculation of essential wave propagation parameters like wavenumbers. The DMM, associated with the WFE approach, enables the calculation of energy diffusion characteristics like reflection and transmission coefficients of specific wave modes. These approaches are extended to consider shunted piezoelectric elements and then to evaluate the performance of shunted piezoelectric patches on the control of wave propagation in the aforementioned smart composite structures. Intensive optimizations can be carried out, with these tools, so as to obtain optimal geometric and electric parameters in the design of these smart structures. The present work is integrated in the CALIOP project in cooperation with the Laboratory of Applied Mechanics R.Chaléat at FEMTO-ST Institute and the G.W. Woodruff School of Mechanical Engineering of Georgia Institute of Technology.
|
4 |
Approche stochastique à base de modes d'ondes : théorie et applications en moyennes et hautes fréquencesBen Souf, Mohamed Amine 23 November 2012 (has links)
Ce travail de recherche a été réalisé au sein du Laboratoire de Tribologie et Dynamique des Systèmes de l’École Centrale de Lyon (FRANCE) en cotutelle avec l’Unité de Mécanique, Modélisation et Productique (U2MP) à l’École Nationale d’Ingénieurs de Sfax (TUNISIE) dans le cadre du projet européen "Mid-Frequency". La prédiction du comportement dynamique des structures est une tâche importante dans la phase de conception de tout produit mécanique. Le choix de l’outil ou de la méthode utilisée dépend de plusieurs facteurs. Pour un système dynamique, la bande de fréquence d’étude est l’un des paramètres essentiels étant donné qu’il existe des approches appropriées pour chaque domaine fréquentiel. Ces derniers seront rapidement inapplicables en changeant le domaine d’application. Par exemple, les méthodes dites hautes fréquences ou globales sont très limitées dans la partie basse du spectre. De même, les méthodes dites basses fréquences deviennent, numériquement, très lourdes et peu performantes si l’on monte en fréquence. Les moyennes fréquences représentent alors les hautes fréquences pour les méthodes globales et les basses fréquences pour les méthodes locales. Comme les incertitudes jouent un rôle important dans les comportements vibratoires en moyennes fréquences, le travail présenté de ce mémoire est une contribution à la recherche d’une approche peu coûteuse en temps de calcul permettant l’extension d’une méthode locale : la méthode des éléments finis ondulatoires, à cette bande de fréquence pour les systèmes à caractère non déterministe. Cette contribution consiste à tenir compte des incertitudes présentes dans le système étudié pour évaluer la dispersion des différents paramètres (spectraux, de diffusion, dynamiques, etc.) et leurs effets sur la réponse globale (cinématique et énergétique) de la structure. Le travail présenté peut être partagé en deux parties. La première concerne le développement des formulations explicites et directes des dispersions des différents paramètres. Cette partie se base sur l’utilisation de la méthode de perturbation à l’ordre un. La deuxième partie est une généralisation de la première. En effet, l’utilisant de la projection des variables aléatoires sur la base des polynômes de chaos permet une évaluation plus générale des effets des incertitudes sur la dynamique des structures périodiques en moyennes fréquences. / The prediction of dynamic behavior of structures is an important task in the design step of any mechanical product. There are many factors affecting the choice of the used methods. For a dynamic system, the frequency band under study is one of the important parameters since for each frequency range exists its appropriate approach which can be quickly inapplicable in other domains. For example, the high frequency methods are very limited in the lower part of the spectrum. Similarly, the so-called low-frequency methods become numerically inefficient if it goes up in frequency range. The mid-frequencies then represent the high-frequencies for global and low frequencies for local methods. Knowing that uncertainties play an important role on the vibro-acoustics behavior in mid-frequencies, the presented work is a contribution to the research approach, with inexpensive computing time, allowing the extension of a local method, called ’the wave finite element method’, in this frequency band. These contributions consist in taking into account uncertainties in the studied system to evaluate the dispersion of all parameters (spectral, diffusion, dynamics, etc.) and their effects on the global response (kinematic and energetic) of the structure. The presented work can be divided into two main parts. The first one involves the development of an explicit and direct formulation describing the dispersion of different parameters; this part is based on the first-order perturbation method. The second part is a generalization of the first one; indeed, using the chaos polynomial projection of all random variables allows a more general assessment of the effects of uncertainties on the dynamics of periodic structure in mid-frequency range.
|
5 |
Prediction of the vibroacoustic response of aerospace composite structures in a broadband frequency rangeChronopoulos, Dimitrios 29 November 2012 (has links) (PDF)
During its mission, a launch vehicle is subject to broadband, severe, aeroacoustic and structure-borne excitations of various provenances, which can endanger the survivability of the payload and the vehicles electronic equipment, and consequently the success of the mission. Aerospace structures are generally characterized by the use of exotic composite materials of various configurations and thicknesses, as well as by their extensively complex geometries and connections between different subsystems. It is therefore of crucial importance for the modern aerospace industry, the development of analytical and numerical tools that can accurately predict the vibroacoustic response of large, composite structures of various geometries and subject to a combination of aeroacoustic excitations. Recently, a lot of research has been conducted on the modelling of wave propagation characteristics within composite structures. In this study, the Wave Finite Element Method (WFEM) is used in order to predict the wave dispersion characteristics within orthotropic composite structures of various geometries, namely flat panels, singly curved panels, doubly curved panels and cylindrical shells. These characteristics are initially used for predicting the modal density and the coupling loss factor of the structures connected to the acoustic medium. Subsequently the broad-band Transmission Loss (TL) of the modelled structures within a Statistical Energy Analysis (SEA) wave-context approach is calculated. Mainly due to the extensive geometric complexity of structures, the use of Finite Element(FE) modelling within the aerospace industry is frequently inevitable. The use of such models is limited mainly because of the large computation time demanded even for calculations in the low frequency range. During the last years, a lot of researchers focus on the model reduction of large FE models, in order to make their application feasible. In this study, the Second Order ARnoldi (SOAR) reduction approach is adopted, in order to minimize the computation time for a fully coupled composite structural-acoustic system, while at the same time retaining a satisfactory accuracy of the prediction in a broadband sense. The system is modelled under various aeroacoustic excitations, namely a diffused acoustic field and a Turbulent Boundary Layer (TBL) excitation. Experimental validation of the developed tools is conducted on a set of orthotropic sandwich composite structures. Initially, the wave propagation characteristics of a flat panel are measured and the experimental results are compared to the WFEM predictions. The later are used in order to formulate an Equivalent Single Layer (ESL) approach for the modelling of the spatial response of the panel within a dynamic stiffness matrix approach. The effect of the temperature of the structure as well as of the acoustic medium on the vibroacoustic response of the system is examined and analyzed. Subsequently, a model of the SYLDA structure, also made of an orthotropic sandwich material, is tested mainly in order to investigate the coupling nature between its various subsystems. The developed ESL modelling is used for an efficient calculation of the response of the structure in the lower frequency range, while for higher frequencies a hybrid WFEM/FEM formulation for modelling discontinuous structures is used.
|
6 |
Approche ondulatoire pour la description numérique du comportement vibroacoustique large bande des conduites avec fluide interne / Wave finite element based techniques for the prediction of the vibroacoustic behavior of fluid filled pipesBhuddi, Ajit 25 November 2015 (has links)
Dans ce travail, une méthode basée sur les éléments finis ondulatoires - Wave Finite Elements (WFE) - est proposée en vue de prédire le rayonnement acoustique de conduites axisyrnétriques de longueur finie, comportant un fluide interne, et immergées dans un fluide acoustique de dimensions infinies. La condition de rayonnement de Sommerfeld est prise en compte en entourant le fluide extérieur d'un perfectly matched layer (PML), c'est-à-dire une couche d'éléments absorbants dans laquelle les ondes acoustiques incidentes sont progressivement amorties. Dans le cadre de l'approche WFE, la conduite, le fluide qu'elle contient, le fluide extérieur et le PML constituent un guide d'ondes multiphysique qui est discrétisé par un maillage éléments finis périodique, et peut être ainsi modélisé comme un assemblage de sous-systèmes identiques de faible longueur. Une base d'ondes se propageant le long de la conduite, calculée à partir du modèle éléments finis d'un sous-système, est utilisée afin de prédire le comportement vibroacoustique de guides d'ondes de longueur finie à moindre coût. Des simulations numériques sont réalisées pour des cas de conduites de structure homogène ou multi-couches. La précision et l'efficacité de la méthode WFE sont clairement établies en comparaison avec la méthode des éléments finis conventionnelle. / In this work, a wave finite element (WFE) method is proposed to predict the sound radiation of finite axisymmetric fluid-filled pipes immersed in an external acoustic fluid of infinite extent, The Sommerfeld radiation condition is taken into account by means of a perfectly matched layer (PML) around the external fluid. Within the WFE framework, the fluid-filled pipe, the surrounding fluid and the PML constitute a multiphysics waveguide that is discretized by means of a periodic finite element mesh, and is treated as an assembly of identical subsystems of small length. Wave modes are computed from the FE model of a multi-physics subsystem and used as a representation basis to assess the vibroacoustic behavior of the finite waveguide at a low computational cost. Numerical experiments are carried out in the cases of axisymmetric pipes of either homogeneous or multi-layered crosssections, The accuracy and efficiency of the proposed approach are dearly highlighted in comparison with the conventional FE method.
|
7 |
STUDY OF BLAST-INDUCED MILD TRAUMATIC BRAIN INJURY: LABORATORY SIMULATION OF BLAST SHOCK WAVESAwad, Neveen January 2014 (has links)
Blast-induced mild traumatic brain injury (BImTBI) is one of the most common causes of traumatic brain injuries. BImTBI mechanisms are not well identified, as most previous blast-related studies were focused on the visible and fatal injuries. BImTBI is a hidden lesion and long-term escalation of related complications is considered a serious health care challenging due to lack of accurate data required for early diagnosis and intervention.
The experimental studies presented in this thesis were performed to investigate aspects of blast shock wave mechanisms that might lead to mild traumatic brain injury. A compressed air-driven shock tube was designed and validated using finite element analysis (FEA) and experimental investigation. Two metal diaphragm types (steel and brass) with three thicknesses (0.127, 0.76, and 0.025mm) were utilized in the shock tube calibration experiment, as a new approach to generate shock wave. The consistency of generated shock waves was confirmed using a statistical assessment of the results by evaluating the shock waves parameters. The analysis results showed that the 0.127mm steel diaphragm induces a reliable shock waveform in the range of BImTB investigations.
Evaluation of the shock wave impacts on the brain was examined using two sets of experiments. The first set was conducted using a gel brain model while the second set was performed using a physical head occupied with a gel brain model and supported by a neck model. The gel brain model in both the experimental studies was generated using silicone gel (Sylgard-527). The effects of tested models locations and orientations with respect to the shock tube exit were investigated by measuring the generated pressure wave within the brain model and acceleration. The results revealed that the pressure waveform and acceleration outcomes were greatly affected by the tested model orientations and locations in relation to the path of shock wave propagation. / Thesis / Doctor of Philosophy (PhD)
|
8 |
Couplage de méthodes d'éléments finis standards (FEM) et ondulatoires (WFEM) pour le calcul de la réponse vibratoire d'une voie ferrée / Coupling of the Finite Element (FE) and Wave Finite Element (WFE) method to compute the vibrationnal response of a railway trackGras, Thibaut 22 September 2017 (has links)
La prédiction du bruit de roulement ferroviaire est en enjeu majeur pour la maitrise des nuisances sonores. Au point de contact roue/rail, la roue et la voie sont excités de manière dynamique, ce qui enclenche le rayonnement du bruit de roulement. Les réponses vibratoires au point de contact ainsi que les taux de décroissance des ondes sont des données primordiales pour simuler de manière précise le bruit de roulement. Or, la dimension infinie de la voie ferrée conduit bien souvent à des modèles éléments finis coûteux et non adaptés à la recherche de solutions innovantes. La thèse a pour objectifs de proposer un modèle vibratoire de voie en éléments finis qui prenne en compte la dimension infinie périodique de la voie, mais aussi d’inclure une portion de voie non-périodique sur laquelle des solutions anti-vibratiles peuvent être testées. La propagation des vibrations est exprimée sous la forme d’une décomposition en ondes par la méthode WFE (Wave Finite Element). Le calcul de la réponse vibratoire de la voie périodique infinie est obtenu à partir du déplacement d’une cellule physique longue d’environ 0.6 m. Pour réduire les temps de calcul nécessaires à sa condensation dynamique, une méthode de bi-périodisation est proposée. Le couplage entre les méthodes éléments finis et WFE est développé pour prendre en considération les supports élastiques dans cette cellule. Les comparaisons avec des mobilités expérimentales ainsi que des taux de décroissance montrent un très bon accord calculs-mesures. Enfin, le modèle développé dans cette thèse a permis de tester l’efficacité d’une solution anti-vibratile innovante développée au sein du projet CERVIFER. Celle-ci offre un comportement bi-mode, elle assouplit les supports autour de la roue préservant ainsi l’infrastructure, mais elle rigidifie les supports loin de la roue pour augmenter les taux de décroissance. Les résultats numériques se révèlent prometteurs en termes d’efficacité du dispositif et entrevoient une poursuite du développement de cette solution anti-vibratile. / Railway noise is a critical issue concerning environmental noise. At the wheel/rail contact point, both the wheel and the track are dynamically excited and vibrate together to emit the well known rolling noise. The point receptance of the rail and the track decay rates are important quantities to accurately predict wheel-rail noise emission. However, the infinite dimension of the track leads to cumbersome numerical finite-element (FE) models and not adapted to assist the research of innovative solutions. The goals of this thesis are to build an efficient numerical model for calculating the vibration from an infinite railway track, but also to include a central non-periodic part with the aim of testing anti-vibration solutions. The vibration propagation along the track is expressed as a sum of different waves using the WFEM (Wave Finite Element Method). The displacements of a 0.6 m unit cell lead to the computation of the whole track. To reduce the dynamic condensation of this cell, a bi-periodic method is proposed in this thesis. The FEM - WFEM coupling is proposed to easily include elastic supports inside the unit cell. Results show a good correlation between test and calculation. Finally, the model proposed in this thesis was used to test the efficiency of an innovative anti-vibration solution developed within the CERVIFER project. It is a dual mode device which makes the supports softer around the wheel to protect the infrastructure, and stiffer away from the wheel to increase the track decay rates. The numerical results revealed to be really promising, and they will permit to pursue the development of this anti-vibration solution.
|
9 |
Design and development of a torsional guided-waves inspection system for the detection and sizing of defects in pipes / Détection des défauts dans les tubes par ondes guidéesKharrat, Mohamed 06 July 2012 (has links)
Plusieurs industries manipulent des substances liquides et gazeuses qui circulent souvent dans de longues canalisations. La technique d'ondes guidées est couramment utilisée dans ce domaine. Cette technique est en progrès continu. Dans cette thèse, un système d'inspection a été conçu et développé. Il est basé sur des transducteurs piézoélectriques qui génèrent des ondes guidées de torsion pouvant se propager le long du tube testé. Les signaux réfléchis des défauts et singularités rencontrés sont détectés aussi par des capteurs piézoélectriques. Des simulations numériques utilisantpar la méthode d'éléments finis standard et la méthode Wave Finite Element(WFEM) ont été effectuées afin de vérifier et de visualiser le phénomène de propagation des ondes dans des tubes intacts et endommagés. Un ensemble de tests a été mis en place sur des tubes droits et courbés avec deux matériaux différents: PVC et acier. L'interaction entre les ondes générées et les défauts usinés a été prouvée.Les résultats numériques et expérimentaux confirment certaines caractéristiques spécifiques concernant le coefficient de réflexion de l'onde. Par la suite, un pipeline industriel d'environ soixante mètres de long et contenant plusieurs défauts et singularités a été testé par le système d'inspection. Les signaux enregistrés ont soumis certains traitements numériques afin de les rendre exploitables. Les signaux traités sont analysés afin d'identifier et de distinguer les réflexions des défauts de celles des singularités structurés. La méthode WFEM a été employée pour construire une base de données numérique des coefficients de réflexion en variant la profondeur et les extensions axiale et circonférentielle du défaut modélisé. Le calcul a été établi en fonction de la fréquence. La corrélation des tailles des défauts est effectuée en balayant la base de données numérique pour trouver la combinaison appropriée de dimensions pour un défaut donné. Les réflexions à partir des singularités structurées (coudes, blocs de béton, colliers, et les soudures) sont traitées ainsi en comparant des coefficients de réflexion obtenus par WFEM à ceux évalués expérimentalement. Enfin, on a étudié numériquement l'effet de la position angulaire d'un défaut sur les coefficients de réflexion et de transmission tout en excitant à différents types d'ondes. La méthode WFE est aussi utilisée pour effectuer le calcul. Cette étude donne un guide à la localisation circonférentielle des défauts dans les tubes. / Long pipelines are widely used in several industries transporting liquid or gas. The guided wave technique is commonly used in this field and it is under continuing progress. In this thesis, an inspection system has been designed and developed. Piezoelectric transducers are employed to generate torsional guided waves that could propagate along the tested pipe; and receive reflected signals from encountered features and damages. Numerical simulations using standard FE and Wave Finite Element methods have been carried out in order to verify and visualize the wave propagation phenomenon in both intact and damaged pipes. A set of tests has been performed on straight and curved pipes with two different materials: PVC and steel. The interaction between generated waves and machined defects has been proven. Numerical and experimental results confirm some specific features in the wave reflection coefficient. Thereafter, an industrial pipeline of about sixty meters long and containing several features has been tested by the inspection system.Recorded signals had submitted some numerical treatments in order to make them interpretable. Processed signals are analyzed to identify defects reflections from structured singularities echoes. The Wave Finite Element Method (WFEM) has been used to construct a numerical database of reflection coefficients from modelled defects by varying thickness, axial and circumferential extents. Calculation was made depending on frequency. The approximation of defect sizes is carried out by sweeping the numerical database to find the suitable combination of dimensions fora given defect. Reflections from structural singularities (elbows, concrete blocks,clamps, and welds) are treated as well by comparing reflection coefficients obtained by WFEM to those evaluated experimentally. Finally, a numerical investigation deals with the effect of defect angular-position on reflection and transmission coefficients while exciting by different types of waves. The spectral method Wave Finite Element has been used to carry out calculation. This study gives guidance to circumferential localization of defects in pipes.
|
10 |
Prediction of the vibroacoustic response of aerospace composite structures in a broadband frequency rangeChronopoulos, Dimitrios 29 November 2012 (has links)
Pendant sa mission, un lanceur est soumis à des excitations large bande, sévères, aérodynamiques, de provenances diverses, qui peuvent mettre en danger la survivabilité de la charge utile et de l’équipement électronique du véhicule, et par conséquent le succès de la mission. Les structures aérospatiales sont généralement caractérisées par l’utilisation de matériaux composites exotiques des configurations et des épaisseurs variantes, ainsi que par leurs géométries largement complexes. Il est donc d’une importance cruciale pour l’industrie aérospatiale moderne, le développement d’outils analytiques et numériques qui peuvent prédire avec précision la réponse vibroacoustique des structures larges, composites de différentes géométries et soumis à une combinaison des excitations aéroacoustiques. Récemment, un grand nombre de recherches ont été menées sur la modélisation des caractéristiques de propagation des ondes au sein des structures composites. Dans cette étude, la méthode des éléments finis ondulatoires (WFEM) est utilisée afin de prédire les caractéristiques de dispersion des ondes dans des structures composites orthotropes de géométries variables, nommément des plaques plates, des panneaux simplement courbés, des panneaux doublement courbés et des coques cylindriques. Ces caractéristiques sont initialement utilisées pour prédire la densité modale et le facteur de perte par couplage des structures connectées au milieu acoustique. Par la suite, la perte de transmission (TL) à large bande des structures modélisées dans le cadre d’une analyse statistique énergétique (SEA) dans un contexte ondulatoire est calculée. Principalement en raison de la complexité géométrique importante de structures, l’utilisation des éléments finis (FE) au sein de l’industrie aérospatiale est souvent inévitable. L’utilisation de ces modèles est limitée principalement à cause du temps de calcul exigé, même pour les calculs dans la bande basses fréquences. Au cours des dernières années, beaucoup de chercheurs travaillent sur la réduction de modèles FE, afin de rendre leur application possible pour des systèmes larges. Dans cette étude, l’approche de SOAR est adoptée, afin de minimiser le temps de calcul pour un système couplé de type structurel-acoustique, tout en conservant une précision satisfaisante de la prédiction dans un sens large bande. Le système est modélisé sous diverses excitations aéroacoustiques, nommément un champ acoustique diffus et une couche limite turbulente (TBL).La validation expérimentale des outils développés est réalisée sur un ensemble de structures sandwich composites orthotropes. Ces derniers sont utilisés afin de formuler une approche couche équivalente unique (ESL) pour la modélisation de la réponse spatiale du panneau dans le contexte d’une approche de matrice de raideur dynamique. L’effet de la température de la structure ainsi que du milieu acoustique sur la réponse du système vibroacoustique est examiné et analysé. Par la suite, un modèle de la structure SYLDA, également fait d’un matériau sandwich orthotrope, est testé principalement dans le but d’enquêter sur la nature de couplage entre ses divers sous-systèmes. La modélisation ESL précédemment développée est utilisé pour un calcul efficace de la réponse de la structure dans la gamme des basses et moyennes fréquences, tandis que pour des fréquences plus élevées, une hybridisation WFEM / FEM pour la modélisation des structures discontinues est utilisé. / During its mission, a launch vehicle is subject to broadband, severe, aeroacoustic and structure-borne excitations of various provenances, which can endanger the survivability of the payload and the vehicles electronic equipment, and consequently the success of the mission. Aerospace structures are generally characterized by the use of exotic composite materials of various configurations and thicknesses, as well as by their extensively complex geometries and connections between different subsystems. It is therefore of crucial importance for the modern aerospace industry, the development of analytical and numerical tools that can accurately predict the vibroacoustic response of large, composite structures of various geometries and subject to a combination of aeroacoustic excitations. Recently, a lot of research has been conducted on the modelling of wave propagation characteristics within composite structures. In this study, the Wave Finite Element Method (WFEM) is used in order to predict the wave dispersion characteristics within orthotropic composite structures of various geometries, namely flat panels, singly curved panels, doubly curved panels and cylindrical shells. These characteristics are initially used for predicting the modal density and the coupling loss factor of the structures connected to the acoustic medium. Subsequently the broad-band Transmission Loss (TL) of the modelled structures within a Statistical Energy Analysis (SEA) wave-context approach is calculated. Mainly due to the extensive geometric complexity of structures, the use of Finite Element(FE) modelling within the aerospace industry is frequently inevitable. The use of such models is limited mainly because of the large computation time demanded even for calculations in the low frequency range. During the last years, a lot of researchers focus on the model reduction of large FE models, in order to make their application feasible. In this study, the Second Order ARnoldi (SOAR) reduction approach is adopted, in order to minimize the computation time for a fully coupled composite structural-acoustic system, while at the same time retaining a satisfactory accuracy of the prediction in a broadband sense. The system is modelled under various aeroacoustic excitations, namely a diffused acoustic field and a Turbulent Boundary Layer (TBL) excitation. Experimental validation of the developed tools is conducted on a set of orthotropic sandwich composite structures. Initially, the wave propagation characteristics of a flat panel are measured and the experimental results are compared to the WFEM predictions. The later are used in order to formulate an Equivalent Single Layer (ESL) approach for the modelling of the spatial response of the panel within a dynamic stiffness matrix approach. The effect of the temperature of the structure as well as of the acoustic medium on the vibroacoustic response of the system is examined and analyzed. Subsequently, a model of the SYLDA structure, also made of an orthotropic sandwich material, is tested mainly in order to investigate the coupling nature between its various subsystems. The developed ESL modelling is used for an efficient calculation of the response of the structure in the lower frequency range, while for higher frequencies a hybrid WFEM/FEM formulation for modelling discontinuous structures is used.
|
Page generated in 0.075 seconds