• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 254
  • 55
  • 54
  • 31
  • 10
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 542
  • 542
  • 138
  • 75
  • 72
  • 70
  • 62
  • 58
  • 51
  • 51
  • 46
  • 38
  • 37
  • 37
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Pressure Estimation in the Systemic Arteries Using a Transfer Function

Thore, Carl-Johan January 2007 (has links)
<p>The aim of this thesis is to develop and study a method for estimation of the pulse pressure in centrally located arteries. Obtaining the central pulse pressure is desirable for several reasons. For example, the central pulse pressure can be used to assess aortic stiffness, which in turn is an important predictor of cardiovascular mortality. In this thesis a method of estimation based on a one--dimensional wave propagation theory applied to a physiological model of the human systemic arterial tree is studied. For the purpose of validation, recorded pressure signals from twenty four control subjects are used. Various methods for individualization of the tree model are discussed, and a method that utilizes an optimization routine is proposed.</p>
192

Effects of terrain features on wave propagation: high-frequency techniques

Sarwar, Muhammad January 2009 (has links)
<p>This Master thesis deals with wave propagation and starts with wave propagation basics. It briefly presents the theory for the diffraction over terrain obstacles and describes two different path loss models, the Hata model and a FFT-based model. The significance of this paper is that it gives the simulation results for the models mentioned above and presents a comparison between the results obtained from an empirical formula and the FFT-model. The comparison shows that the approach based on Fast Fourier Transform is good enough for prediction of the path loss and that it is a time efficient method.</p>
193

A communication analysis of high-frequency ionospheric scattering

January 1962 (has links)
"November 15, 1962." "Submitted to the Department of Electrical Engineering, M.I.T., January 15, 1962, in partial fulfillment of the requirements for the degree of Master of Science." / Bibliography: p. 75-76. / Army Signal Corps Contract No. DA 36-039-sc-78108. Dept. of the Army Project No. 3-99-20-001 Project 3-99-00-000. Army Signal Corps Contract No. DA-SIG-36-039-61-G14.
194

Ionospheric modification by powerful HF-waves : Underdense F-region heating by X-Mode

Löfås, Henrik January 2008 (has links)
Observations of modifications of the electron temperature in the F-region produced by powerful high-frequency waves transmitted in X-mode are presented. The experiments were performed during quiet nighttime conditions with low ionospheric densities so no reflections occurred. Nevertheless temperature enhancements of the order of 300-400K were obtained. The modifications found can be well described by the theory of Ohmic heating by the pump wave and both temporal and spatial changes are reproduced.  A brief overview of several different experimental campaigns at EISCAT facilities in the period from October 2006 to February 2008 are also given pointing out some interesting features from the different experiments. The main focus is then on the campaign during October 2006 and modifications of the electron temperature in the F-region.
195

Finite element analysis of surface acoustic wave resonators

Kannan, Thirumalai 03 July 2006
Surface Acoustic Wave (SAW) devices are key components in RF and IF stages of many electronic systems. A Surface Acoustic wave is a mechanical wave, which is excited on the surface of a piezoelectric substrate, when an alternating electric voltage is applied through a comb-like interdigital transducer (electrodes) patterned on it. Most SAW applications to date have been in the sub-2GHz region, but emerging applications require SAW devices at higher frequencies. The traditional models are inadequate to account for pronounced second order effects at the GHz range and also new microfabrication techniques are required to obtain quality devices as the critical dimensions shrink into the nano-scale range at these frequencies. The finite element method (a numerical method of solving differential equations) has the potential to account for these effects and ever increasing sub-micron processing capabilities of LIGA (X-ray lithography) present a promising outlook for high frequency SAW device modeling and fabrication respectively. <p>A finite element model has been developed using commercial software ANSYS for one port SAW resonators and is presented in this thesis. The one port SAW resonators are generally connected in form of ladder networks to form low-loss SAW filters. The spacing between the electrodes and the velocity of the SAW determine the frequency of operation of these devices. A finite element model has been developed for three different types of SAWdevices namely Rayleigh, leaky and longitudinal leaky SAW (LLSAW). The LLSAW has higher velocity as compared to other two types and hence considered in this work as a good prospect for high frequency SAW devices. <p>A full finite element model could not be solved due to high computing requirements and hence some assumptions were made and the results were validated against published results in the literature. The results indicate that even with simplifying assumptions and approximations FE model provides reasonably accurate results, that can be used in device design. Some of the simulations (in LLSAW based devices) in this work were also done with a view towards using LIGA (X-ray lithography) for fabrication of high frequency devices as they have the capability for high aspect ratios.
196

Acoustical Communications for Wireless Downhole Telemetry Systems

Farraj, Abdallah 14 March 2013 (has links)
This dissertation investigates the use of advanced acoustical communication techniques for wireless downhole telemetry systems. Using acoustic waves for downhole telemetry systems is investigated in order to replace the wired communication systems currently being used in oil and gas wells. While the acoustic technology offers great benefits, a clear understanding of its propagation aspects inside the wells is lacking. This dissertation describes a testbed that was designed to study the propagation of acoustic waves over production pipes. The wireless communication system was built using an acoustic transmitter, five connected segments of seven inch production pipes, and an acoustic receiver. The propagation experiments that were conducted on this testbed in order to characterize the channel behavior are explained as well. Moreover, the large scale statistics of the acoustic waves along the pipe string are described. Results of this work indicate that acoustic waves experience a frequency- dependent attenuation and dispersion over the pipe string. In addition, the testbed was modified by encasing one pipe segment in concrete in order to study the effect of concrete on wave propagation. The concrete was found to filter out many of the signal harmonics; accordingly, the acoustic waves experienced extra attenuation and dispersion. Signal processing techniques are also investigated to address the effects of multipaths and attenuation in the acoustic channel; results show great enhancements in signal qualities and the usefulness of these algorithms for downhole communication systems. Furthermore, to explore an alternative to vibrating the body of a cemented pipe string, a testbed was designed to investigate the propagation aspects of sound waves inside the interior of the production pipes. Results indicate that some low-frequency sound waves can travel for thousands of feet inside a cemented pipe string and can still be detected reliably.
197

Investigating Seismic Wave Scattering in Heterogeneous Environments and Implications for Seismic Imaging

Bongajum, Emmanuel 29 August 2011 (has links)
Inhomogeneities in the earth (fractures, layering, shape, composition) are responsible for seismic wave scattering and contribute towards amplitude, travel time, frequency and spectral fluctuations observed in seismic records. This thesis presents findings that complement our understanding of seismic scattering and imaging in heterogeneous media. Interest focused on probing the correlation between spatial variations in attributes that characterize the state (physical, chemical) of rocks and seismic waveform data with consideration towards potential implications for seismic survey design to optimize imaging, imaging with converted waves, microseismic monitoring, velocity modeling and imaging of lithological boundaries. The highlights of the research strategy include: • The use of stochastic methods to build realistic earth models that characterize the 1D, 2D and 3D spatial variations in rock properties. These petrophysical earth models are conditioned by experimental (“hard”) data such as geology, wave velocities and density from case study areas like the Bosumtwi impact crater and the base metal deposits in Nash Creek (Canada) and Thompson (Canada). The distributions of the sulfide mineralization at Nash Creek and at Thompson represent two end members of the heterogeneity spectrum. While the sulfide mineralization at Nash Creek is highly disseminated in nature, the sulfide rich zones at Thompson occur as well defined volumes (lens-shaped) having a strong density contrast with respect to the host rocks. • Analysis of modeled forward (transmitted) and backward scattered wave propagation in the heterogeneous earth models. As a result of a study aimed at correlating resonant frequencies to scale length parameters, it is observed that the efficiency of the spectral ratio method is undermined by its sensitivity to the interference between P- and S-waves as well as the impedance contrast. It is also demonstrated that travel time of direct arrivals (transmitted waves) can be used to infer structural heterogeneity and velocity distribution beyond borehole locations. However, the success of imaging with transmitted waves is subject to the influence of geology which must factor in the choice of acquisition geometry. For the first time, multivariate and multidimensional (3D) heterogeneous earth models that are conditioned by hard data from multiple boreholes are constructed. The methodology requires having at least one physical rock property attribute that is sampled along the whole borehole length. This approach helped to characterize the uncertainty in the distribution of rock densities and metal content in a study region of the Nash Creek property. The density data suggests the sulfides are disseminated and this poses challenges for both gravity and seismic imaging methods. Modeling studies suggest seismic methods will not be suited for imaging zones with such disseminated mineralization. On the other hand, when dealing with massive sulfide mineralization that has complex geology (steep dip) like the case in Thompson, the success of the seismic imaging process relies very much on the acquisition geometry as well as the variability of the physical properties of the host rock. Elastic modeling results show that a Vertical Seismic Profiling (VSP) geometry is better suited to capture the down-dip scattered wavefield from the orebody. While surface acquisition geometry with sufficient extended length in the down dip direction can also be used to detect the dipping orebody, its efficiency can however be undermined by background heterogeneity: when the scale length along the direction of dip is comparable to the dimensions of the orebody, the scattered wavefields are strong enough to mask the diffraction hyperbola generated from the ore. Moreover, the study also corroborates that converted waves generated from the scattering processes hold promise as an imaging tool for a dipping orebody as they are least affected by the scattering processes of background heterogeneity.
198

Investigating Seismic Wave Scattering in Heterogeneous Environments and Implications for Seismic Imaging

Bongajum, Emmanuel 29 August 2011 (has links)
Inhomogeneities in the earth (fractures, layering, shape, composition) are responsible for seismic wave scattering and contribute towards amplitude, travel time, frequency and spectral fluctuations observed in seismic records. This thesis presents findings that complement our understanding of seismic scattering and imaging in heterogeneous media. Interest focused on probing the correlation between spatial variations in attributes that characterize the state (physical, chemical) of rocks and seismic waveform data with consideration towards potential implications for seismic survey design to optimize imaging, imaging with converted waves, microseismic monitoring, velocity modeling and imaging of lithological boundaries. The highlights of the research strategy include: • The use of stochastic methods to build realistic earth models that characterize the 1D, 2D and 3D spatial variations in rock properties. These petrophysical earth models are conditioned by experimental (“hard”) data such as geology, wave velocities and density from case study areas like the Bosumtwi impact crater and the base metal deposits in Nash Creek (Canada) and Thompson (Canada). The distributions of the sulfide mineralization at Nash Creek and at Thompson represent two end members of the heterogeneity spectrum. While the sulfide mineralization at Nash Creek is highly disseminated in nature, the sulfide rich zones at Thompson occur as well defined volumes (lens-shaped) having a strong density contrast with respect to the host rocks. • Analysis of modeled forward (transmitted) and backward scattered wave propagation in the heterogeneous earth models. As a result of a study aimed at correlating resonant frequencies to scale length parameters, it is observed that the efficiency of the spectral ratio method is undermined by its sensitivity to the interference between P- and S-waves as well as the impedance contrast. It is also demonstrated that travel time of direct arrivals (transmitted waves) can be used to infer structural heterogeneity and velocity distribution beyond borehole locations. However, the success of imaging with transmitted waves is subject to the influence of geology which must factor in the choice of acquisition geometry. For the first time, multivariate and multidimensional (3D) heterogeneous earth models that are conditioned by hard data from multiple boreholes are constructed. The methodology requires having at least one physical rock property attribute that is sampled along the whole borehole length. This approach helped to characterize the uncertainty in the distribution of rock densities and metal content in a study region of the Nash Creek property. The density data suggests the sulfides are disseminated and this poses challenges for both gravity and seismic imaging methods. Modeling studies suggest seismic methods will not be suited for imaging zones with such disseminated mineralization. On the other hand, when dealing with massive sulfide mineralization that has complex geology (steep dip) like the case in Thompson, the success of the seismic imaging process relies very much on the acquisition geometry as well as the variability of the physical properties of the host rock. Elastic modeling results show that a Vertical Seismic Profiling (VSP) geometry is better suited to capture the down-dip scattered wavefield from the orebody. While surface acquisition geometry with sufficient extended length in the down dip direction can also be used to detect the dipping orebody, its efficiency can however be undermined by background heterogeneity: when the scale length along the direction of dip is comparable to the dimensions of the orebody, the scattered wavefields are strong enough to mask the diffraction hyperbola generated from the ore. Moreover, the study also corroborates that converted waves generated from the scattering processes hold promise as an imaging tool for a dipping orebody as they are least affected by the scattering processes of background heterogeneity.
199

Interpreting wave propagation in a homogeneous, isotropic, steel cylinder

Stoyko, Darryl Keith 12 January 2005 (has links)
The majority of commercially available ultrasonic transducers used to excite and measure wave propagation in structures can be coupled only to a free surface. While convenient, this method is likely to excite multiple structural modes, making data interpretation difficult. Furthermore, the many modes excited make predicting the structure’s response a computationally intensive task. Here the dynamic radial displacement induced by a transient radial point load is calculated at more than 230,000 points on the outer surface of a virgin steel pipe to simulate a typical experiment. The radial component of the displacement field is calculated by convolving the Green’s functions of the pipe with the transient load. These functions are calculated on personal computers (in a distributed arrangement) by employing modal summation. The mode shapes are obtained from a Semi-Analytical Finite Element formulation used in conjunction with a separation of variables. The results are presented in a four dimensional animation, providing easier interpretations and insight into how to best select observation points for the detection of defects. The accuracy of the calculated displacements is verified experimentally. Agreement is good when magnitude and phase corrections are incorporated from the frequency response curves of the transducers used. / February 2005
200

Consolidation and wave propagation in a porous medium

Gerasik, Vladimir January 2006 (has links)
Basic diffusion analytical solutions of one-dimensional consolidation are presented for the case of a semi-infinite domain. Typical tractions considered include instantaneous loads of the medium with a free boundary pressure, as well as the case of a permeable membrane located at the forced boundary. <br /><br /> Two-dimensional boundary value problems for a porous half-space, described by the widely recognized Biot's equations of poroelasticity, including inertia effects is discussed. In this poroelastic version of Lamb's problem in the classical theory of linear elastic waves, the surface of a porous half-space is subjected to a prescribed line traction. The following two broadly applicable cases are considered: 1) A steady state harmonic load, 2) An impulsive load (Dirac delta function time dependence). A general analytical solution of the problem in the Fourier -- Laplace space was obtained by the application of the standard Helmholtz potential decomposition, which reduces the problem to a system of wave equations for three unknown potentials, which correspond to three types of motion: P1, slow P2 wave, and the shear wave S. The possibilities of, and procedure for, obtaining analytic solutions in the physical space subsequently are discussed in detail. When viscous dissipation effects are taken into account, a steady-state harmonic line traction solution can be represented in the form of well convergent integrals, while for the case when viscous dissipation is ignored, closed form analytic solutions can be obtained for impulsive forcing with the application of the Cagniard -- de Hoop inversion technique. Numerical studies of the dispersion relation of the Rayleigh, or surface, wave for cases in which the dissipation is not negligible are presented.

Page generated in 0.0935 seconds