• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 18
  • 10
  • 6
  • 6
  • 5
  • 4
  • 1
  • Tagged with
  • 205
  • 205
  • 74
  • 59
  • 46
  • 45
  • 30
  • 24
  • 22
  • 21
  • 21
  • 21
  • 20
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Numerical methods for modelling the viscous effects on the interactions between multiple wave energy converters

McCallum, Peter Duncan January 2017 (has links)
The vast and rich body of literature covering the numerical modelling of hydrodynamic floating body systems has demonstrated their great power and versatility when applied to offshore marine energy systems. It is possible to model almost any type of physical phenomenon which could be expected within such a system, however, limitations of computing power continue to restrict the usage of the most comprehensive models to very narrow and focused design applications. Despite the continued evolution of parallel computing, one major issue that users of computational tools invariably face is how to simplify their modelled systems in order to achieve practically the necessary computations, whilst capturing enough of the pertinent physics, with great enough ‘resolution’, to give robust results. The challenge is, in particular, to accurately deliver a complete spectrum of results, that account for all of the anticipated sea conditions and allow for the optimisation of different control scenarios. This thesis examines the uncertainty associated with the effects of viscosity and nonlinear behaviour on a small scale model of an oscillating system. There are a wide range of Computational Fluid Dynamics (CFD) methods which capture viscous effects. In general however, the oscillating, six degree-of-freedom floating body problem is best approached using a linear potential flow based Boundary Element Method (BEM), as the time taken to process an equivalent model will differ by several orders of magnitude. For modelling control scenarios and investigating the effects of different sea states, CFD is highly impractical. As potential flows are inviscid by definition, it is therefore important to know how much of an impact viscosity has on the solution, particularly when different scales are of interest during device development. The first aim was to develop verified and validated solutions for a generic type decaying system. The arrangement studied was adapted from an array tank test experiment which was undertaken in 2013 by an external consortium (Stratigaki et al., 2014). Solutions were delivered for various configurations and gave relatively close approximations of the experimental measurements, with the modelling uncertainties attributed to transient nonlinear effects and to dissipative effects. It was not possible however to discern the independent damping processes. A set of CFD models was then developed in order to investigate the above discrepancies, by numerically capturing the nonlinear effects, and the effects of viscosity. The uncontrolled mechanical effects of the experiment could then be deduced by elimination, using known response patterns from the measurements and derived results from the CFD simulations. The numerical uncertainty however posed a significant challenge, with the outcomes supported by verification evidence, and detailed discussions relating to the model configuration. Finally, the impact of viscous and nonlinear effects were examined for two different interacting systems – for two neighbouring devices, and an in-line array of five devices. The importance of interaction behaviour was tested by considering the transfer of radiation forces between the model wave energy converters, due to the widely accepted notion that array effects can impact on energy production yields. As there are only very limited examples of multi-body interaction analysis of wave energy devices using CFD, the results with this work provide important evidence to substantiate the use of CFD for power production evaluations of wave energy arrays. An effective methodology has been outlined in this thesis for delivering specific tests to examine the effects of viscosity and nonlinear processes on a particular shape of floating device. By evaluating both the inviscid and viscous solutions using a nonlinear model, the extraction of systematic mechanical effects from experimental measurements can be achieved. As these uncontrolled frictional effects can be related to the device motion in a relatively straightforward manner, they can be accommodated within efficient potential flow model, even if it transpires that they are nonlinear. The viscous effects are more complex; however, by decomposing into shear and pressure components, it may in some situations be possible to capture partially the dynamics as a further damping term in the efficient time-domain type solver. This is an area of further work.
62

Beach morphodynamics in the lee of a wave farm : synergies with coastal defence

Abanades Tercero, Javier January 2017 (has links)
Wave energy has a great potential in many coastal areas thanks to a number of advantages: the abundant resource, the highest energy density of all renewables, the greater availability factors than e.g. wind or solar energy; and the low environmental and particularly visual impact. In addition, a novel advantage will be investigated in this work: the possibility of a synergetic use for carbon-free energy production and coastal protection. In this context, wave energy can contribute not only to decarbonising the energy supply and reducing greenhouse emissions, but also to mitigating coastal erosion. In effect, wave farms will be deployed nearshore to generate electricity from wave energy, and therefore the leeward coast will be exposed to a milder wave climate, which can potentially mitigate coastal erosion. This thesis aims to determine the effectiveness of wave farms for combating coastal erosion by means of a suite of state-of-the-art process-based numerical models that are applied in several case studies (Perranporth Beach,UK; and Xago Beach, Spain) and at different time scales (from the short-term to the long-term). A wave propagation model, SWAN, is used to establish the effects of the wave farm on the wave conditions. The outcomes of SWAN will be coupled to XBeach, a costal processes model that is applied to analyse the effects of the milder wave conditions on the coast. In addition to these models, empirical classifications and analytical solutions are used as well to characterise the alteration of the beach morphology due to the presence of a wave farm. The analysis of the wave farm impacts on the wave conditions and the beach morphology will be carried out through a set of ad hoc impact indicators. Parameters such as the reduction in the significant wave height, the performance of the wave farm, the effects on the seabed level and the erosion in the beach face area are defined to characterise these impacts. Moreover, the role played by the key design parameters of wave farms, e.g. farm-to-coast distance or layout, is also examined. The results from this analysis demonstrate that wave farms, in addition to their main purpose of generating carbon-free energy, are capable of reducing erosion at the coast. Storm-induced erosion is significantly reduced due to the presence of wave farms in the areas most at risk from this phenomenon. However, the effects of wave farms on the coast do not lend themselves to general statements, for they will depend on the wave farm design (WEC type, layout and farm-to-coast distance) and the characteristics of the area in question, as shown in this document for Perranporth and Xago. In summary, this synergy will improve the economic viability of wave farm projects through savings in conventional coastal defence measures, thereby fostering the development of this nascent renewable, reducing greenhouse gas emission and converging towards a more sustainable energy model. Thus, wave energy contributes to mitigating climate change by two means, one acting on the cause, the other on the effect: (i) by bringing down carbon emissions (cause) through its production of renewable energy, and (ii) by reducing coastal erosion (effect).
63

Theoretical and Experimental Analysis of Operational Wave Energy Converters

Lejerskog, Erik January 2016 (has links)
This thesis studies wave energy converters developed at Uppsala University. The wave energy converters are of point absorbing type with direct driven linear generators. The aim has been to study generator design with closed stator slots as well as offshore experimental studies. By closing the stator slots, the harmonic content in the magnetic flux density is reduced and as a result the cogging forces in the generator are reduced as well. By reducing these forces, the noise and vibrations from the generator can be lowered. The studies have shown a significant reduction in the cogging forces in the generator. Moreover, by closing the slots, the magnetic flux finds a short-cut through the closed slots and will lower the magnetic flux linking the windings. The experimental studies have focused on the motion of the translator. The weight of the translator has a significant impact on the power absorption, especially in the downward motion. Two different experiments have been studied with two different translator weights. The results show that with a higher translator weight the power absorption is more evenly produced between the upward and downward motion as was expected from the simulation models. Furthermore, studies on the influence of the changing active area have been conducted which show some benefits with a changing active area during the downward motion. The experimental results also indicate snatch-loads for the wave energy converter with a lower translator weight. Within this thesis results from a comparative study between two WECs with almost identical properties have been presented. The generators electrical properties and the buoy volumes are the same, but with different buoy heights and diameters. Moreover, experimental studies including the conversion from AC to DC have been achieved. The work in this thesis is part of a larger wave power project at Uppsala University. The project studies the whole process from the energy absorption from the waves to the connection to the electrical grid. The project has a test-site at the west coast of Sweden near the town of Lysekil, where wave energy systems have been studied since 2004.
64

System Analysis for Hydrostatic Transmission for Wave Energy Applications - Simulation and Validation

Dießel, Dominic, Bryans, Garth, Verdegem, Louis, Murrenhoff, Hubertus 03 May 2016 (has links) (PDF)
Wave Energy Converters (WEC) are used to transform energy stored in ocean waves into electrical energy. One type of WECs consists of buoyant bodies. To extract energy from their motion, hydraulic cylinders can be used to generate hydraulic power. For conversion into electric power various systems have been analysed in literature. However, the focus was put on efficiency and rigorous analyses of the system behaviour are still missing. In this paper an exemplary system consisting of two hydraulic cylinders, switchable check valves, accumulators and three motor-generator sets is analysed with help of simulation and measurement. This exemplary system is called WavePOD and was installed at the Institute for Fluid Power Drives and Controls (IFAS) of RWTH Aachen University together with Aquamarine Power and Bosch Rexroth for testing. In this paper the data collected during various test phases is used for system analysis and for validating the simulation. The simulation model is presented. The system’s response to various switching operations is investigated. Comparing the simulation with measurements validates the system`s dynamic model.
65

Effect of a nonlinear power take off on a wave energy converter

Bailey, Helen Louise January 2011 (has links)
This thesis is titled The influence of a nonlinear Power Take Off on a Wave Energy Converter. It looks at the effect that having a nonlinear Power Take Off (PTO) has on an inertial referenced, slack moored, point absorber, Wave Energy Converter (WEC). The generic device studied utilizes relative heave motion between an axi-symmetric cylinder and an internal mass, for the PTO to operate between. The PTO is the part of the WEC that transforms the relative motion into electricity. In this work, three different types of nonlinear PTO and a linear PTO are presented, tested, analysed and compared. The three nonlinear PTO types are: • A PTO that extracts energy in only one direction, either in relative compression or expansion. • A linear PTO and an additional endstop or peripheral PTO, that can only extract energy when the relative position of the internal mass has reached a pre-determined position. • A PTO that has damping forces that are quadratically proportional to the relative velocity. A numerical simulation has been built based upon a Runge-Kutta time series progression. The model uses the summation of the excitation force from the waves, the radiation force from the movement of the cylinder, the buoyancy force and the PTO forces. These combine to cause acceleration of the mass of the external cylinder, with an equal and opposite PTO force acting on the internal mass. The excitation force and added mass values are obtained from the boundary element method software, WAMIT. Prony’s method is used to obtain an approximate radiation force, based upon the radiation time force history. This numerical model operates on both a 1:40 scale and a full sized model. The numerical model finds the optimal PTO parameters, for different PTO setups, in irregular sea states. This optimum is based on the power extracted as well as indications of the reliability and lifetime of the system. The numerical simulation presents results showing how the nonlinearity of the PTO influences the motions of the WEC, resulting in dissimilarities between the Response Amplitude Operator (RAO) results, obtained from regular seas, and the Linear Transfer Function (LTF), found from irregular sea testing. The experimental model has been tested in the Curved Wave Tank facility at the University of Edinburgh, with a 1:40 scaled model. It used a central rod both as a support structure and to limit the movement of the cylinder and internal mass to heave. Between the cylinder and internal mass a spring and pneumatic damper operate in parallel, in various setups. It was tested in regular and irregular sea states and the position of the internal mass and cylinder was monitored. The experimental model was tested to ascertain the time series motions, RAO, LTF, the relative phase between the bodies and the power extracted for different wave climates. The numerical and experimental work were compared to allow confidence in both models. They showed relatively good agreement for the RAOs, LTFs and predictions of the relative phase but there was discrepancies in the predicted power for both regular and irregular seas. This difference is due to the difficulties in obtaining the relative velocities in the experimental model, resulting in a significant error in power prediction, since the power is proportional to the square of the relative velocities. The conclusions show that having a mono-directional PTO as opposed to a bi-directional PTO results in an approximately equal or greater power extraction in a variety of different sea states. An additional endstop or peripheral damper can increase the total power that a WEC extracts, in some situations, and may be advantageous depending upon the other potential benefits it brings to the WEC.
66

Spatial variability of wave fields over the scale of a wave energy test site

Ashton, Ian Gerard January 2011 (has links)
Accurate wave measurements are required for wave energy applications, including resource assessments and performance assessments. In response, wave data are measured from deployment sites, commonly using wave buoys or other point wave sensors. Spatial variability in the wave field will introduce inaccuracies to the analysis of data captured from a single point to represent a separate location or area. This thesis describes research undertaken to quantify the effect of spatial variability on the accuracy of direct wave measurements taken at a wave energy site. An array of four timesynchronised wave buoys were deployed, separated by 500m, in a location close to the Wave Hub wave energy test site in Cornwall, UK. These data were subject to close scrutiny in terms of data processing and quality control, which raised specific issues regarding data processing and the validation of wave data for a new measurement facility. Specific recommendations are made for data captured from this facility, and bespoke quality control routines were developed. This process minimises the possible contribution of errors to the processed data, which is observed to be of the highest importance when analysing simultaneous data sets, and provides a data set that is particularly suited to the examination of the spatial characteristics of ocean waves. The differences between simultaneous data demonstrated local physical processes to be causing a deterministic difference between the waves at the measurement sites, which contributed to a significant difference between the power statistics at different locations within the site. Instantaneous differences between measurements were observed to agree well with theoretical estimations of random error, based on sampling theory. The culmination of the research is a unique analysis of the spatial properties of ocean wave fields on the scale of a wave energy test site, of direct relevance to the development and monitoring of wave energy test sites.
67

Wave energy resource modelling and energy pattern identification using a spectral wave model

Lavidas, George January 2016 (has links)
The benefits of the Oceans and Seas have been exploited by societies for many centuries; the marine offshore and naval sectors have been the predominant users of the waters. It has been overlooked until recently, that significant amounts of energy can be harnessed by waves, providing an additional abundant resource for renewable energy generation. The increasing energy needs of current societies have led to the consideration of waves as an exploitable renewable resource. During the past decades, advancements have been made towards commercialising wave energy converters (WECs), though significant knowledge gap exists on the accurate estimation of the potential energy that can be harnessed. In order, to enhance our understanding of opportunities within wave energy highly resolved long-term resource assessment of potential sites are necessary, which will allow for not only a detailed energy estimation methodology but also information on extreme waves that are expected to affect the survivability and reliability of future wave energy converters. This research work aims to contribute the necessary knowledge to the estimation of wave energy resources from both highly energetic and milder sea environment, exhibiting the opportunities that lay within these environments. A numerical model SWAN (Simulating WAves Nearshore), based on spectral wave formulation has been utilised for wave hindcasting which was driven by high resolution temporal and spatially varying wind data. The capabilities of the model, allow a detailed representation of several coastal areas, which are not usually accurately resolved by larger ocean models. The outcome of this research provides long-term data and characterisation of the wave environment and its extremes for the Scottish region. Moreover, investigation on the applicability of wave energy in the Mediterranean Sea, an area which was often overlooked, showed that wave energy is more versatile than expected. The outcomes provide robust estimations of extreme wave values for coastal waters, alongside valuable information about the usage of numerical modelling and WECs to establish energy pattern production. Several key tuning factors and inputs such as boundary wind conditions and computational domain parameters are tested. This was done in a systematic way in order to establish a customized solution and detect parameters that may hinder the process and lead to erroneous results. The uncertainty of power production by WECs is reduced by the introduction of utilization rates based on the long-term data, which include annual and seasonal variability. This will assist to minimize assumptions for energy estimates and financial returns in business plans. Finally, the importance of continuous improvements in resource assessment is stressed in order to enhance our understanding of the wave environment.
68

Control of wave energy converters using machine learning strategies

Anderlini, Enrico January 2017 (has links)
Wave energy converters are devices that are designed to extract power from ocean waves. Existing wave energy converter technologies are not financially viable yet. Control systems have been identified as one of the areas that can contribute the most towards the increase in energy absorption and reduction of loads acting on the structure, whilst incurring only minimal extra hardware costs. In this thesis, control schemes are developed for wave energy converters, with the focus on single isolated devices. Numerical models of increasing complexity are developed for the simulation of a point absorber, which is a type of wave energy converter with small dimensions with respect to the dominating wave length. After investigating state-of-the-art control schemes, the existing control strategies reported in the literature have been found to rely on the model of the system dynamics to determine the optimal control action. This is despite the fact that modelling errors can negatively affect the performance of the device, particularly in highly energetic waves when non-linear effects become more significant. Furthermore, the controller should be adaptive so that changes in the system dynamics, e.g. due to marine growth or non-critical subsystem failure, are accounted for. Hence, machine learning approaches have been investigated as an alternative, with a focus on neural networks and reinforcement learning for control applications. A time-averaged approach will be employed for the development of the control schemes to enable a practical implementation on WECs based on the standard in the industry at the moment. Neural networks are applied to the active control of a point absorber. They are used mainly for system identification, where the mean power is related to the current sea state and parameters of the power take-off unit. The developed control scheme presents a similar performance to optimal active control for the analysed simulations, which rely on linear hydrodynamics. Reinforcement learning is then applied to the passive and active control of a wave energy converter for the first time. The successful development of different control schemes is described in detail, focusing on the encountered challenges in the selection of states, actions and reward function. The performance of reinforcement learning is assessed against state-of-the-art control strategies. Reinforcement learning is shown to learn the optimal behaviour in a reasonable time frame, whilst recognizing each sea state without reliance on any models of the system dynamics. Additionally, the strategy is able to deal with model non-linearities. Furthermore, it is shown that the control scheme is able to adapt to changes in the device dynamics, as for instance due to marine growth.
69

Wave Energy Converter Performance Modeling and Cost of Electricity Assessment

Jarocki, Dmitri 01 April 2010 (has links)
California is experiencing a rapid increase in interest for the potential of converting ocean waves into clean electricity. Numerous applications have been submitted for the permitting of such renewable energy projects; however the profitability, practicability, and survivability have yet to be proven. Wave energy conversion technology has steadily matured since its naissance in the 1970’s, several wave energy power installations currently exist, and numerous plans for commercial power plant are in the works on the shores of multiple continents. This study aims to assess the economic viability of two proposed commercial wave energy power plant projects on the Central California Coast. A theoretical 25 MW capacity wave energy plant located at a site five nautical miles off of Point Arguello, in Santa Barbara County is compared to a site five nautical miles off of Morro Bay, in the County of San Luis Obispo. The Pacific Gas and Electric Company and Green Wave Energy Solutions, LLC have proposed full-scale commercial wave power plants at these sites, and are currently undergoing the federal permitting processes. Historical wave resource statistics from 1980 to 2001 are analyzed with performance specifications for the AquaBuOY, Pelamis P1, and WaveDragon wave energy converters (WECs) to calculate the annual electrical output of each device at each site. Sophisticated computer modeling of the bathymetric influence on the wave resource at each site is presented using the program Simulating Waves Nearshore (SWAN) developed by the Delft University of Technology. The wave energy flux, significant wave height, and peak period are computed at each site for typical summer and winter swell cases, using seafloor depth measurements at a 90 meter rectangular grid resolution. The economic viability of commercial electricity generation is evaluated for each WEC at each site by the calculation of the net present value of an estimated 25-year project life-cycle, the internal rate of return, and the required cost of electricity for a 10-year project simple payback period. The lowest required price of electricity is $0.13/kWh and occurs at the Point Arguello site using the AquaBuOY WEC. The highest annual capacity factor is 18% using the Pelamis WEC. The net present value and internal rate of return calculations suggest that the AquaBuOY WEC is profitable at both sites for electricity prices above $0.14/kWh. Shallow water wave propagation SWAN modeling demonstrated favorable wave energy flux states for WEC operation and power generation at both sites, with typical winter energy fluxes of 30-37 kW/m.
70

The Baltic Sea Wave Field : Impacts on the Sediment and Biogeochemistry

Jönsson, Anette January 2002 (has links)
<p>The wave field in the Baltic Sea has been modelled for a two-year period with the spectral wave model HYPAS. There is a large seasonal variation in the field and a minor annual one, both reflect the wind variation in the area. Since the Baltic Sea is fetch limited, the dominant wind direction is important for the maximum wave heights.</p><p>By studying the modelled wave energy density in combination with bottom type maps, the effect of the wave field on the sediment surface is examined. Up to half the bottoms in the Baltic Sea are affected ~25% of the time. A statistical relation between wave energy density and bottom types is found for the Gulf of Riga, but in the rest of the area the sediment maps were to coarse. It is, due to this, not possible to say if the result is valid for the whole area or if it is site specific.</p><p>During resuspension events the remineralisation is increased since deposited organic material is reintroduced into the watermass and there exposed to higher levels of oxygen. This process could act as an increased regional source of nitrogen in nutrient budgets and thus influence the conditions for nitrogen fixation and perhaps explain some of the geographical differences in the nitrogen fixation rates.</p>

Page generated in 0.0549 seconds