• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 406
  • 309
  • 42
  • 35
  • 15
  • 12
  • 10
  • 10
  • 10
  • 10
  • 6
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 944
  • 345
  • 145
  • 145
  • 128
  • 107
  • 96
  • 91
  • 87
  • 85
  • 80
  • 67
  • 66
  • 66
  • 60
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

Clinical dose feature extraction for prediction of dose mimicking parameters / Extrahering av features från kliniska dosbilder för prediktion av doshärmande parametrar

Finnson, Anton January 2021 (has links)
Treating cancer with radiotherapy requires precise planning. Several planning pipelines rely on reference dose mimicking, where one tries to find machine parameters best mimicking a given reference dose. Dose mimicking relies on having a function that quantifies dose similarity well, necessitating methods for feature extraction of dose images. In this thesis we investigate ways of extracting features from clinical doseimages, and propose a few proof-of-concept dose mimicking functions using the extracted features. We extend current techniques and lay the foundation for new techniques for feature extraction, using mathematical frameworks developed in entirely different areas. In particular we give an introduction to wavelet theory, which provides signal decomposition techniques suitable for analysing local structure, and propose two different dose mimicking functions using wavelets. Furthermore, we extend ROI-based mimicking functions to use artificial ROIs, and we investigate variational autoencoders and their application to the clinical dose feature extraction problem. We conclude that the proposed functions have the potential to address certain shortcomings of current dose mimicking functions. The four methods all seem to approximately capture some notion of dose similarity. Used in combination with the current framework they have the potential of improving dose mimickingresults. However, the numerical tests supporting this are brief, and more thorough numerical investigations are necessary to properly evaluate the usefulness of the new dose mimicking functions. / Behandling av cancer med strålterapi kräver precis planering. Flera olika planeringsramverk bygger på doshärmning, som innebär att hitta de maskinparametrar som bäst härmar en given referensdos. För doshärmning behövs en funktion som kvantifierar likheten mellan två doser, vilket kräver ett sätt att extrahera utmärkande egenskaper – så kallade features – från dosbilder. I det här examensarbetet undersöker vi olika matematiska metoder för att extrahera features från kliniska dosbilder, och presenterar några olika förslag på prototyper till doshärmningsfunktioner, konstruerade utifrån extraherade features. Vi utvidgar nuvarande tekniker och lägger grunden för nya tekniker genom att använda matematiska ramverk utvecklade för helt andra syften. Speciellt så ger vi en introduktion till wavelet-teori, som ger matematiska verktyg för att analysera lokala beteenden hos signaler, exempelvis bilder. Vi föreslår två olika doshärmningsfunktioner som utnyttjar wavelets, och utvidgar ROI-baseraddoshärmning genom att introducera artificiella ROIar. Vidare så undersökervi så kallade variational autoencoders  och möjligheten att använda dessa för extrahering av features från dosbilder. Vi kommer fram till att de föreslagna funktionerna har potential att åtgärda vissa begränsningar som finns hos de doshärmningsfunktioner som används idag. De fyra metoderna verkar alla approximativt kvantifiera begreppet doslikhet. Användning av dessa nya metoder i kombination med nuvarande ramverk för doshärmning har potential att förbättra resultaten från doshärmning. De numeriska undersökningar som underbygger dessa slutsatser är dock inte särskilt ingående, så mer noggranna numeriska tester krävs för att kunna ge några definitiva svar angående de presenterade doshärmningsfunktionernas användbarhet ipraktiken.
462

Regressão não-paramétrica com erros correlacionados via ondaletas. / Non-parametric regression with correlated errors using wavelets

Porto, Rogério de Faria 03 October 2008 (has links)
Nesta tese, são obtidas taxas de convergência a zero, do risco de estimação obtido com regressão não-paramétrica via ondaletas, quando há erros correlacionados. Quatro métodos de regressão não-paramétrica via ondaletas, com delineamento desigualmente espaçado são estudados na presença de erros correlacionados, oriundos de processos estocásticos. São apresentadas condições sobre os erros e adaptações aos procedimentos necessárias à obtenção de taxas de convergência quase minimax, para os estimadores. Sempre que possível são obtidas taxas de convergência para os estimadores no domínio da função, sob condições bastante gerais a respeito da função a ser estimada, do delineamento e da correlação dos erros. Mediante estudos de simulação, são avaliados os comportamentos de alguns métodos propostos quando aplicados a amostras finitas. Em geral sugere-se usar um dos procedimentos estudados, porém aplicando-se limiares por níveis. Como a estimação da variância dos coecientes de detalhes pode ser problemática em alguns casos, também se propõe um procedimento iterativo semi-paramétrico geral para métodos que utilizam ondaletas, na presença de erros em séries temporais. / In this thesis, rates of convergence to zero are obtained for the estimation risk, for non-parametric regression using wavelets, when the errors are correlated. Four non-parametric regression methods using wavelets, with un-equally spaced design are studied in the presence of correlated errors, that come from stochastic processes. Conditions on the errors and adaptations to the procedures are presented, so that the estimators achieve quasi-minimax rates of convergence. Whenever is possible, rates of convergence are obtained for the estimators in the domain of the function, under mild conditions on the function to be estimated, on the design and on the error correlation. Through simulation studies, the behavior of some of the proposed methods is evaluated, when used on finite samples. Generally, it is suggested to use one of the studied methods, however applying thresholds by level. Since the estimation of the detail coecients can be dicult in some cases, it is also proposed a general semi-parametric iterative procedure, for wavelet methods in the presence of time-series errors.
463

Regressão não-paramétrica com erros correlacionados via ondaletas. / Non-parametric regression with correlated errors using wavelets

Rogério de Faria Porto 03 October 2008 (has links)
Nesta tese, são obtidas taxas de convergência a zero, do risco de estimação obtido com regressão não-paramétrica via ondaletas, quando há erros correlacionados. Quatro métodos de regressão não-paramétrica via ondaletas, com delineamento desigualmente espaçado são estudados na presença de erros correlacionados, oriundos de processos estocásticos. São apresentadas condições sobre os erros e adaptações aos procedimentos necessárias à obtenção de taxas de convergência quase minimax, para os estimadores. Sempre que possível são obtidas taxas de convergência para os estimadores no domínio da função, sob condições bastante gerais a respeito da função a ser estimada, do delineamento e da correlação dos erros. Mediante estudos de simulação, são avaliados os comportamentos de alguns métodos propostos quando aplicados a amostras finitas. Em geral sugere-se usar um dos procedimentos estudados, porém aplicando-se limiares por níveis. Como a estimação da variância dos coecientes de detalhes pode ser problemática em alguns casos, também se propõe um procedimento iterativo semi-paramétrico geral para métodos que utilizam ondaletas, na presença de erros em séries temporais. / In this thesis, rates of convergence to zero are obtained for the estimation risk, for non-parametric regression using wavelets, when the errors are correlated. Four non-parametric regression methods using wavelets, with un-equally spaced design are studied in the presence of correlated errors, that come from stochastic processes. Conditions on the errors and adaptations to the procedures are presented, so that the estimators achieve quasi-minimax rates of convergence. Whenever is possible, rates of convergence are obtained for the estimators in the domain of the function, under mild conditions on the function to be estimated, on the design and on the error correlation. Through simulation studies, the behavior of some of the proposed methods is evaluated, when used on finite samples. Generally, it is suggested to use one of the studied methods, however applying thresholds by level. Since the estimation of the detail coecients can be dicult in some cases, it is also proposed a general semi-parametric iterative procedure, for wavelet methods in the presence of time-series errors.
464

Detekce a sledování malých pohybujících se objektů / Detection and Tracking of Small Moving Objects

Filip, Jan Unknown Date (has links)
Thesis deals with the detection and tracking of small moving objects from static images. This work shows a general overview of methods and approaches to detection and tracking of objects. There are also described some other approaches to the whole solution. It also included basic definitions, such a noise, convolution and mathematical morphology. The work described Bayesian filtering and Kalman filter. It described the theory of Wavelets, wavelets filters and transformations. The work deals with different ways of the blob`s detection. It is here the design and implementation of applications, which is based on the wavelets filters and Kalman filter. It`s implemented several methods of background subtraction, which are compared by testing. Testing and application are designed to detect vehicles, which are moving faraway (at least 200 m away).
465

Robustez da estabilidade assintótica e aproximações de soluções via wavelets / Robustness of asymptotical stability and approximation of solutions via wavelets

Nakassima, Guilherme Kenji 23 April 2019 (has links)
Neste trabalho, estudamos equações diferenciais em espaços de Banach. Duas questões são abordadas: a robustez da estabilidade assintótica, e a aproximação de soluções de sistemas periódicos por wavelets. Observa-se que a estabilidade exponencial do sistema x = A(t)x é qualitativamente preservada pelo sistema perturbado x=A(t)x+B(t)x se B(t) for integralmente pequeno. Consequentemente, tal propriedade é preservada por uma perturbação B(wt)x para w suficientemente grande, mesmo se B(t) pertence a uma classe mais geral de funções do que as funções quase-periódicas, aqui apresentada. Além disso, estudamos o efeito de aproximações de uma função periódica f (t) por wavelets periódicas na solução de um sistema periódico x = Ax+ f (t). Conclui-se que as soluções do problema inicial podem inclusive ser aproximadas utilizando a wavelet base não-periódica. / In this work, we study differential equations in Banach spaces. Two questions were considered: the robustness of the asymptotic stability, and the approximation of solutions of periodic systems by wavelets. It is observed that the exponential stability of the system x = A(t)x is qualitatively preserved by the perturbed system x = A(t)x+B(t)x if B(t) is integrally small. As a consequence, this property is preserved by a perturbation B(wt) for w sufficiently large, even if B(t) is in a class of functions which is more general than almost-periodic functions, presented here. Furthermore, we study the effect of approximating a periodic function f (t) by periodic wavelets in the solution of a periodic system x = Ax+ f (t). It is concluded that the solutions of the initial problem can even be approximated using the non-periodic base wavelet.
466

"Recuperação de imagens por conteúdo através de análise multiresolução por Wavelets" / "Content based image retrieval through multiresolution wavelet analysis

Castañon, Cesar Armando Beltran 28 February 2003 (has links)
Os sistemas de recuperação de imagens por conteúdo (CBIR -Content-based Image Retrieval) possuem a habilidade de retornar imagens utilizando como chave de busca outras imagens. Considerando uma imagem de consulta, o foco de um sistema CBIR é pesquisar no banco de dados as "n" imagens mais similares à imagem de consulta de acordo com um critério dado. Este trabalho de pesquisa foi direcionado na geração de vetores de características para um sistema CBIR considerando bancos de imagens médicas, para propiciar tal tipo de consulta. Um vetor de características é uma representação numérica sucinta de uma imagem ou parte dela, descrevendo seus detalhes mais representativos. O vetor de características é um vetor "n"-dimensional contendo esses valores. Essa nova representação da imagem pode ser armazenada em uma base de dados, e assim, agilizar o processo de recuperação de imagens. Uma abordagem alternativa para caracterizar imagens para um sistema CBIR é a transformação do domínio. A principal vantagem de uma transformação é sua efetiva caracterização das propriedades locais da imagem. Recentemente, pesquisadores das áreas de matemática aplicada e de processamento de sinais desenvolveram técnicas práticas de "wavelet" para a representação multiescala e análise de sinais. Estas novas ferramentas diferenciam-se das tradicionais técnicas de Fourier pela forma de localizar a informação no plano tempo-freqüência; basicamente, elas têm a capacidade de mudar de uma resolução para outra, o que faz delas especialmente adequadas para a análise de sinais não estacionários. A transformada "wavelet" consiste de um conjunto de funções base que representa o sinal em diferentes bandas de freqüência, cada uma com resoluções distintas correspondentes a cada escala. Estas foram aplicadas com sucesso na compressão, melhoria, análise, classificação, caracterização e recuperação de imagens. Uma das áreas beneficiadas, onde essas propriedades têm encontrado grande relevância, é a área médica, através da representação e descrição de imagens médicas. Este trabalho descreve uma abordagem para um banco de imagens médicas, que é orientada à extração de características para um sistema CBIR baseada na decomposição multiresolução de "wavelets" utilizando os filtros de Daubechies e Gabor. Essas novas características de imagens foram também testadas utilizando uma estrutura de indexação métrica "Slim-tree". Assim, pode-se aumentar o alcance semântico do sistema cbPACS (Content-Based Picture Archiving and Comunication Systems), atualmente em desenvolvimento conjunto entre o Grupo de Bases de Dados e Imagens do ICMC--USP e o Centro de Ciências de Imagens e Física Médica do Hospital das Clínicas de Riberão Preto-USP. / Content-based image retrieval (CBIR) refers to the ability to retrieve images on the basis of the image content. Given a query image, the goal of a CBIR system is to search the database and return the "n" most similar (close) ones to the query image according to a given criteria. Our research addresses the generation of feature vectors of a CBIR system for medical image databases. A feature vector is a numeric representation of an image or part of it over its representative aspects. The feature vector is a "n"-dimensional vector organizing such values. This new image representation can be stored into a database and allow a fast image retrieval. An alternative for image characterization for a CBIR system is the domain transform. The principal advantage of a transform is its effective characterization for their local image properties. In the past few years, researches in applied mathematics and signal processing have developed practical "wavelet" methods for the multiscale representation and analysis of signals. These new tools differ from the traditional Fourier techniques by the way in which they localize the information in the time-frequency plane; in particular, they are capable of trading one type of resolution for the other, which makes them especially suitable for the analysis of non-stationary signals. The "wavelet" transform is a set of basis functions that represents signals in different frequency bands, each one with a resolution matching its scale. They have been successfully applied to image compression, enhancements, analysis, classifications, characterization and retrieval. One privileged area of application where these properties have been found to be relevant is medical imaging. In this work we describe an approach to CBIR for medical image databases focused on feature extraction based on multiresolution "wavelets" decomposition, taking advantage of the Daubechies and Gabor. Fundamental to our approach is how images are characterized, such that the retrieval procedure can bring similar images within the domain of interest, using a metric structure indexing, like the "Slim-tree". Thus, it increased the semantic capability of the cbPACS(Content-Based Picture Archiving and Comunication Systems), currently in joined developing between the Database and Image Group of the ICMC--USP and the Science Center for Images and Physical Medic of the Clinics Hospital of Riberão Preto--USP.
467

Estudo comparativo da transformada wavelet no reconhecimento de padrões da íris humana / A comparative study of wavelet transform in human iris pattern recognition

Castelano, Célio Ricardo 21 September 2006 (has links)
Neste trabalho é apresentado um método para reconhecimento de seres humanos através da textura da íris. A imagem do olho é processada através da análise do gradiente, com uma técnica de dispersão aleatória de sementes. Um vetor de características é extraído para cada íris, baseado na análise dos componentes wavelet em diversos níveis de decomposição. Para se mensurar as distâncias entre esses vetores foi utilizado o cálculo da distância Euclidiana, gerando-se curvas recall x precision para se medir a eficiência do método desenvolvido. Os resultados obtidos com algumas famílias wavelets demonstraram que o método proposto é capaz de realizar o reconhecimento humano através da íris com uma precisão eficiente. / This work presents a method for recognition of human beings by iris texture. The image of the eye is processed through gradient analysis, based on a random dispersion of seeds. So, it is extracted a feature vector for each iris based on wavelet transform in some levels of decomposition. To estimate the distances between these vectors it was used the Euclidean distance, and recall x precision curves are generated to measure the efficiency of the developed method. The results gotten with some wavelets families had demonstrated that the proposed methodology is capable to do human recognition through the iris with an efficient precision.
468

Modelo computacional baseado em técnicas wavelets para relacionar imagens digitais obtidas em diferentes escalas e resoluções / Computational model based on wavelet techniques for linking digital images obtained at different scales and resolutions

Minatel, Edson Roberto 03 October 2003 (has links)
É apresentado o desenvolvimento de um modelo computacional que visa relacionar imagens digitais obtidas em diferentes escalas e resoluções com aplicação de Wavelets. Seu desenvolvimento encontra-se no contexto multidisciplinar e situa-se na intersecção das linhas de pesquisa de áreas da Física, da Matemática e da Computação. Desta forma, optou-se na implementação por uma abordagem computacional dos estudos, com aplicação em imagens digitais provenientes da reconstrução de dados de tomografia computadorizada de Raios-X. Resultados indicam que a implementação do modelo computacional desenvolvido tem sua funcionalidade comprovada, uma vez que os atributos vetoriais dos objetos considerados para análise (poros) foram mantidos estáveis em diferentes resoluções estudadas. O modelo foi implementado em linguagem de programação C++ com uso de orientação a objetos e organizado em classes. Adicionalmente, sua aplicação é viabilizada para diversas plataformas computacionais no que tange a sistemas operacionais e processadores. Do ponto de vista científico, o sistema resultante, além de ser uma ferramenta importante no estudo de meios porosos através de imagens de tomografia computadorizada por Raios-X, contribui com métodos inovadores que fazem uso de Wavelets e são aplicados na suavização de bordas por técnica sub-pixel, na otimização de desempenho e no processamento de dados para interpolação / This work consists of the development of a computational model aimed at relating digital images obtained on different scales and resolutions to the application of Wavelets. The development of this model lies within a multidisciplinary context, at the intersection of the research lines of areas of Physics, Mathematics and Computation. The choice of these studies therefore fel1 on a computational approach, with the application of digital images originating from the reconstruction of computerized tomographic X-ray data. The results of the implementation of the computational model developed here confirm the model\'s functionality, since the vectorial attributes of the objects utilized for our analysis (pores) remained stable under different resolutions. The model was implemented in the C++ programming language using object orientation, and the model\'s methods were organized into classes based on their application on different computational platforms, from the standpoint of operational systems and processors. In the scientific point of view, the resulting system is an important tool in the porous means researches using computerized tomography by X-rays and it has exclusive methods. These methods use Wavelets and they have application in edge smoothing processes by sub-pixel technique, in optimizing processing time and in data processing for interpolation
469

Visual analytics via graph signal processing / Análise visual via processamento de signal em grafo

Dal Col Júnior, Alcebíades 08 May 2018 (has links)
The classical wavelet transform has been widely used in image and signal processing, where a signal is decomposed into a combination of basis signals. By analyzing the individual contribution of the basis signals, one can infer properties of the original signal. This dissertation presents an overview of the extension of the classical signal processing theory to graph domains. Specifically, we review the graph Fourier transform and graph wavelet transforms both of which based on the spectral graph theory, and explore their properties through illustrative examples. The main features of the spectral graph wavelet transforms are presented using synthetic and real-world data. Furthermore, we introduce in this dissertation a novel method for visual analysis of dynamic networks, which relies on the graph wavelet theory. Dynamic networks naturally appear in a multitude of applications from different domains. Analyzing and exploring dynamic networks in order to understand and detect patterns and phenomena is challenging, fostering the development of new methodologies, particularly in the field of visual analytics. Our method enables the automatic analysis of a signal defined on the nodes of a network, making viable the detection of network properties. Specifically, we use a fast approximation of the graph wavelet transform to derive a set of wavelet coefficients, which are then used to identify activity patterns on large networks, including their temporal recurrence. The wavelet coefficients naturally encode spatial and temporal variations of the signal, leading to an efficient and meaningful representation. This method allows for the exploration of the structural evolution of the network and their patterns over time. The effectiveness of our approach is demonstrated using different scenarios and comparisons involving real dynamic networks. / A transformada wavelet clássica tem sido amplamente usada no processamento de imagens e sinais, onde um sinal é decomposto em uma combinação de sinais de base. Analisando a contribuição individual dos sinais de base, pode-se inferir propriedades do sinal original. Esta tese apresenta uma visão geral da extensão da teoria clássica de processamento de sinais para grafos. Especificamente, revisamos a transformada de Fourier em grafo e as transformadas wavelet em grafo ambas fundamentadas na teoria espectral de grafos, e exploramos suas propriedades através de exemplos ilustrativos. As principais características das transformadas wavelet espectrais em grafo são apresentadas usando dados sintéticos e reais. Além disso, introduzimos nesta tese um método inovador para análise visual de redes dinâmicas, que utiliza a teoria de wavelets em grafo. Redes dinâmicas aparecem naturalmente em uma infinidade de aplicações de diferentes domínios. Analisar e explorar redes dinâmicas a fim de entender e detectar padrões e fenômenos é desafiador, fomentando o desenvolvimento de novas metodologias, particularmente no campo de análise visual. Nosso método permite a análise automática de um sinal definido nos vértices de uma rede, tornando possível a detecção de propriedades da rede. Especificamente, usamos uma aproximação da transformada wavelet em grafo para obter um conjunto de coeficientes wavelet, que são então usados para identificar padrões de atividade em redes de grande porte, incluindo a sua recorrência temporal. Os coeficientes wavelet naturalmente codificam variações espaciais e temporais do sinal, criando uma representação eficiente e com significado expressivo. Esse método permite explorar a evolução estrutural da rede e seus padrões ao longo do tempo. A eficácia da nossa abordagem é demonstrada usando diferentes cenários e comparações envolvendo redes dinâmicas reais.
470

Comparação entre métodos de normalização de iluminação utilizados para melhorar a taxa do reconhecimento facial / Comparison between illumination normalization methods used to improve the rate of facial recognition

Michelle Magalhães Mendonça 25 June 2008 (has links)
Condições distintas de iluminação numa imagem podem produzir representações desiguais do mesmo objeto, dificultando o processo de segmentação e reconhecimento de padrões, incluindo o reconhecimento facial. Devido a isso, a distribuição de iluminação numa imagem é considerada de grande importância, e novos algoritmos de normalização utilizando técnicas mais recentes ainda vêm sendo pesquisados. O objetivo dessa pesquisa foi o de avaliar os seguintes algoritmos de normalização da iluminação encontrados na literatura, que obtiveram bons resultado no reconhecimento de faces: LogAbout, variação do filtro homomórfico e método baseado em wavelets. O objetivo foi o de identificar o método de normalização da iluminação que resulta na melhor taxa de reconhecimento facial. Os algoritmos de reconhecimento utilizados foram: auto-faces, PCA (Principal Component Analyses) com rede neural LVQ (Learning Vector Quantization) e wavelets com rede neural MLP (Multilayer Perceptron). Como entrada, foram utilizadas imagens do banco Yale, que foram divididas em três subconjuntos. Os resultados mostraram que o método de normalização da iluminação que utiliza wavelet e LogAbout foram os que apresentaram melhoria significativa no reconhecimento facial. Os resultados também evidenciaram que, de uma maneira geral, com a utilização dos métodos de normalização da iluminação, obtém-se uma melhor taxa do reconhecimento facial, exceto para o método de normalização variação do filtro homomórfico com os algoritmos de reconhecimento facial auto-faces e wavelet com rede neural MLP. / Distinct lighting conditions in an image can produce unequal representations of the same object, compromising segmentation and pattern recognition processes, including facial recognition. Hence, the lighting distribution on an image is considered of great importance, and normalization algorithms using new techniques have still been researched. This research aims to evaluate the following illumination normalization algorithms found in literature: LogAbout, variation of homomorphic filter and wavelet based method. The main interest was to find out the illumination normalization method which improves the facial recognition rate. The algorithms used for face recognition were: eigenfaces, PCA (Principal Component Analysis) with LVQ neural network and wavelets with MLP (Multilayer Perceptron) neural network. Images from Yale Face Database B, divided into three subsets have been used. The results show that the wavelet and LogAbout technique provided the best facial recognition rate. Experiments showed that the illumination normalization methods, in general, improve the facial recognition rate, except for the variation of homomorphic filter technique with the algorithms: eigenfaces and PCA with LVQ.

Page generated in 3.1746 seconds