• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 734
  • 442
  • 115
  • 90
  • 47
  • 44
  • 35
  • 25
  • 11
  • 9
  • 6
  • 5
  • 4
  • 4
  • 3
  • Tagged with
  • 1799
  • 436
  • 371
  • 347
  • 312
  • 293
  • 241
  • 194
  • 180
  • 178
  • 172
  • 172
  • 171
  • 170
  • 170
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Lubrication mechanism of hydrocarbon-mimicking ionic liquids

Nyberg, Erik January 2017 (has links)
Lubrication is critical in order to achieve high efficiency and reliability of machine elements such as gears, bearings, and other moving mechanical assemblies (MMA). In space applications, tribological properties of lubricants are quickly growing more important. Traditional space systems such as satellites imply MMA such as gyroscopes, antenna pointing mechanisms, and solar array drives. These MMA operate in high vacuum (<10-5 Pa) under lightly loaded conditions. Modern space missions on the other hand, such as remotely operated vehicles used for in-situ Mars exploration relies on different types of MMA. In these robotic systems, electromechanical actuators are being used extensively to provide controlled motion. Gears and bearings in these actuators operate in an atmosphere mainly consisting of CO2 at ~10+3 Pa under heavily loaded contact conditions. In these conditions, the tribosystem is likely to operate in the boundary lubricated regime, with consequent risk of high friction and wear. High molecular weight fluids have significant heritage in space because of their low vapor pressure. They are currently employed as lubricants in a wide range of space applications, as they meet high demands on resistance to vacuum outgassing. Unfortunately, the large molecules are susceptible to degradation under heavy load. Ionic liquids (ILs) on the other hand, are synthetic fluids that consist entirely of ion pairs with opposing charge. The resulting ion bonds enable inherently low vapor pressure of the fluid without the need for a high molecular weight. For this reason ILs have been advocated as potential lubricants for space applications, but so far compatibility issues have hampered their use as lubricants. Countless IL variations are possible, and solutions are thus likely to exist. Constituent ions can be designed individually and combined in various configurations. However, the fundamental understanding of the lubricating mechanism of ionic liquids is still incomplete, and consequently the optimum molecular structure for IL lubricants remain unknown. In this thesis, a stepwise approach to molecular design of IL lubricants is described, and the resulting hydrocarbon-mimicking ionic liquids are evaluated in tribological experiments. In this thesis, the experiments focus on tribological performance, using steel-steel tribopairs in air environment under boundary lubrication (Paper I). Boundary film formation under a range of contact pressures and temperatures, is analyzed after tribotesting by optical profilometry, scanning electron microscopy (SEM), and energy dispersive X- iii ray spectroscopy (EDS) in Paper II. The analysis reveal formation of a highly effective boundary film based on silicate, that can be further enhanced by amine additives. This thesis demonstrates the feasibility of improving tribological performance of ionic liquids by molecular design. / Projekt: Rymdforskarskolan 2015
272

Vysoce legované litiny Ni-resist a jejich vlastnosti / High-alloyed cast irons Ni-resist and treir properties

Matulová, Anna January 2019 (has links)
This master’s thesis deals with high-alloyed Ni-Resist cast irons and their properties. The theoretical part describes their chemical composition and individual elements from which are these cast irons composed, their characteristic properties and examples of use in practice. Furthermore, the work focuses on the wear of materials, especially on abrasive wear, because Ni-Resist casts iron exhibit a number of specific properties, such as corrosion resistance, refractoriness and heat resistance and also abrasion resistance, on which is this thesis focused. Attention is also paid to other abrasion resistant materials, because specimens from different materials are compared in the practical part in order to find a more suitable material for the production of plate castings into the shakeouts.
273

A study on wear characteristics of high strength steels under sliding contact

Mussa, Abdulbaset January 2020 (has links)
In the last decades, significant improvements regarding the design, materials and technology of rock drills have been made. Likewise, in sheet metal forming, forming tools experience very high contact pressures when processing high strength steel sheets. In both applications components operate under extremely tough contact conditions that result in an accelerated component failure. Enhancements on mechanical properties of components material subjected to extreme contact conditions are highly required in order to withstand the application loads and prevent severe wear. The present thesis was focused on understanding of machinery component damage mechanisms under severe contact conditions. A case study of worn components used in rock drilling and sheet metal cold work was carried out. Thread joints from rock drilling and punches from sheet metal pressing were selected for the investigation. For these components, sliding contact under high contact pressure is a common load condition under the components usage. Then, to understand and quantify the influence of contact parameters, load and surface quality on material performance, laboratory simulations were performed. The results were used for a comparative analysis of the typical damage mechanisms observed in the tests and the case study of the components. The case study results showed that the threaded surfaces underwent severe plastic deformation due to the high-pressure sliding contact. The microstructure beneath the worn surface was altered and surface cracks and delamination were frequently observed at the worn surface. The dominant damage mechanism found on the investigated punches was adhesive wear. Material transfer adds friction stresses at the punch surface and ultimately, with repeated punch strokes, it leads to initiation and propagation of fatigue cracks. Wear process in thread joint and punch wear was simulated using the SOFS. The worn specimens tested experimentally showed similar wear mechanisms obtained in the case study. The thread joint wear simulation showed that the total damage at the worn surface was a result of adhesive wear, plastic deformation, and initiation and propagation of fatigue cracks. In addition, the results showed that the type of motion had a significant influence on the worn volume and crack initiation, and more severe wear was observed at reciprocal motion. The punch wear simulation showed that the friction quickly increased as work material from metal sheets transferred to the disc surface. The rate of the material transfer was strongly dependent on the combination of sheet material and tool steel. Further, the present experimental simulations were applicable to characterize and predict wear of components in the application. / Components used in rock drilling and sheet metal forming operate under harsh contact conditions that result in an early-life component failure. Wear and fatigue are considered as the most common damage mechanism for these components. Commonly, the service life of a component is designed based on its fatigue life. However, wear might have a significant effect on the components life too. Wear results in a surface damage that in turn may cause a fatigue crack initiation. Therefore, knowledge about wear of materials and components is a key factor in design and prediction of the lifetime of the components. In order to predict wear of a certain component, a thorough understanding of the component with regards to its material properties, application loads and working environment, and damage mechanisms is required. The overall aim of the present work was to define the typical wear mechanisms occurred on machinery components used in rock drilling and sheet metal forming. A comparative analysis of the case studies and results from performed laboratory tests simulated wear mechanisms in the applications highlighted wear mechanisms and factors influencing severity of wear in the applications. Obtained information is crucial for ranking and selection of the best material in the applications. / <p>The presentation will will be via zoom. PhD student will together with the supervisors will be in Karlstad while the opponent is in Luleå. </p>
274

Simulation of Wheel and Rail Profile Evolution : Wear Modelling and Validation

Enblom, Roger January 2004 (has links)
Numerical procedures for reliable wheel and rail wearprediction are rare. Recent development of simulationtechniques and computer power together with tribologicalknowledge do however suggest computer aided wear prediction.The objective of the related research field at the RoyalInstitute of Technology (KTH) is to arrive at a numericalprocedure able to simulate profile evolution due to uniformwear to a degree of accuracy sufficient for application tovehicle dynamics simulation. Such a tool would be useful formaintenance planning as well as optimisation of the transportsystem and its components. The research contribution accounted for in this thesisincludes, in addition to a literature review, refinement ofmethods applied to uniform wheel wear simulation by inclusionof braking and improvement of the contact model. Further atentative application to uniform rail wheel simulation has beenproposed and tested. The first part addresses issues related to braking andwheel-rail contact conditions in the context of wheel wearsimulation. The KTH approach includes Archard’s wear modelwith associated wear maps, vehicle dynamics simulation andrailway network definition. In previous work at KTH certainvariations in operating conditions have been accounted forthrough empirically estimated average scaling factors. Theobjective of the current research is to be able to include suchvariations in the set of simulations. In particular theinfluence of disc braking and varying friction and lubricationconditions are investigated. Both environmental factors likemoist and contamination and deliberate lubrication need to beconsidered. As part of the associated contact analysis theinfluence of tangential elastic deformation of the contactingsurfaces on the sliding velocity has been separatelyinvestigated and found to be essential in case of partial slipcontact conditions. In the second part validation of the improvements related towheel wear simulation is addressed. Disc braking has beenincluded in the simulation set and a wear map for moist contactconditions based on recent tribometer tests has been draftedand tested. It has been shown that the previously used brakingfactor accounts for the combination of the contributions fromsurface elasticity and braking. Good agreement withmeasurements from the Stockholm commuter service is achieved.It is concluded that the model improvements accounted for aresufficient for adequate simulation of tread wear but thatfurther development of the flange / gauge corner contactmodelling may be needed. In the final part a procedure for simulation of rail wearand corresponding profile evolution has been formulated. Asimulation set is selected defining the vehicles running on thetrack to be investigated, their operating conditions, andcontact parameters. Several variations of input data may beincluded together with the corresponding occurrenceprobability. Trial calculations of four non-lubricated curveswith radii from 303 m to 802 m show qualitatively reasonableresults in terms of profile shape development and difference inwear mechanisms between gauge corner and rail head. The wearrates related to traffic tonnage are however overestimated. Itis believed that model refinements in terms of environmentalinfluence and contact stress calculation are useful to improvethe quantitative results. / QC 20100531
275

Mechanisms of Formation and Effects of Transition Metal Oxides in Silicon Nitride on Steel Dry Sliding Contacts

Harris, Michael D. 12 1900 (has links)
Silicon nitride on steel sliding contacts may provide advantageous tribological properties over traditional self-mated pairs, however the friction and wear behavior at high sliding speeds (>1 m/s) is not well understood. Previous studies at low sliding speeds (< 1 m/s) have found that the wear mechanisms change as a function of the operating parameters, e.g. atmosphere, sliding speed, load, and temperature, due to the formation of transition metal oxides such as Fe2O3 and Fe3O4. This study detected transient effects of the dry silicon nitride on steel contact over a range of sliding speeds to understand their relation to tribochemical reactions and the resulting tribological behavior. Two sets of dry silicon nitride on steel experiments were conducted at 1.45 GPa maximum Hertzian pressure. The first set were low sliding speed reciprocating experiments, conducted at an average of 0.06 m/s, conducted at variable operating temperature, ranging from 23 °C to 1000 °C. In the low sliding speed experiments, transitions of the wear mechanism from adhesive wear, to abrasive wear, then to oxidative wear was observed when the operating temperature increased. The second set were high sliding speed experiments, conducted at variable sliding speeds, ranging from 1 m/s to 16 m/s. In the high sliding speed experiments, a transition from adhesive wear to oxidative wear was observed when the sliding speed surpassed 4.5 m/s. The high sliding speed experiments were accompanied by in-situ instrumentation which detected the presence of a tribofilm which correlated to a reduction in friction, and its formation was linked to tribochemical reactions induced by high flash temperatures. Both sets of experiments had a maximum estimated contact temperature of 1000 °C where oxidative wear was prevalent. Although, the low sliding speed experiments underwent severe bulk oxidation and thermal softening effects, while the high sliding speed experiments experienced localized flash heating events with temperatures sufficient to form a semi-coherent tribofilm that was lubricious and significantly improved wear resistance. Therefore, the effects of transition metal oxides in sliding contacts are determined to be significantly influenced on their mechanisms of formation and interrelated to the operating parameters as found for dry sliding silicon nitride on steel contacts.
276

The effect of chemical additives on cutting forces and rate of wear of natural diamonds

Rao, Bokka Narasimha,1952- January 1978 (has links)
Call number: LD2668 .T4 1978 R37 / Master of Science
277

Tribometer with programmable motion and load to investigate the influence of molecular structure on wear of orthopaedic polyethylene

Kilgour, Alastair Scott January 2010 (has links)
Total hip arthroplasty commonly involves a hard metallic/ceramic femoral ball component articulating against an acetabular ultra-high molecular weight polyethylene (UHMWPE) counter-bearing. A novel six-station, wear tribometer, featuring programmable load and motion, was designed to further the investigation into wear, sub-surface plasticity and debris generation of UHMWPE. This thesis describes the pin-on-plate device, its validation and subsequent use to assess unirradiated (-PE) and gamma-irradiated highly crosslinked (+PE) UHMWPE wear behaviour. With the emphasis on dynamic loading and a closer gait matched open wear path, the tribometer improves on the clinical relevance of pin-on-plate testing. There is a requirement for this type of machine in order to investigate the directional dependence of wear and debris generation of UHMWPE more accurately, where “simplified” tribometers (adequate for constant load/constant velocity and constant load/sinusoidal velocity work) are not capable or suitable. For the first time in orthopaedic pin-on-plate studies, tests were conducted using an advanced dynamic load synchronised to a more physiologically accurate elliptical motion path. To validate the machine, three orthopaedic polymers of clinical relevance; Polytetrafluroethylene, Polyacetal, and UHMWPE were subjected to linear-reciprocating (LR) and novel elliptical motion paths under a Paul-type load profile. All three polymers showed higher wear factors under elliptical motion, by up to 2 orders of magnitude, agreeing well with explanted values. The UHMWPE elliptical wear factor was comparable to that reported for clinical, where kelliptical = 1.56 x 10-6 mm3/Nm. In the crosslinked study, the mean steady state wear of -PE and +PE groups under linear reciprocating motion was not significantly different. However, under elliptical motion, crosslinking reduced UHMWPE wear by up to 92% when compared to the unirradiated group. In –PE pins worn under LR motion and in +PE pins subjected to both motion paths a sub-surface damage zone with reduced crystallinity and increased strain was measured using Raman spectroscopy. This was attributed to large strain accumulation in the slower wearing surfaces providing a mechanism for de-crystallisation. The discovery of such a near-surface layer is in good agreement with critical strain wear models. In disagreement, however, we found the sliding induced layer to extend to greater depths than previous reported.
278

Simulation and Measurement of Wheel on Rail Fatigue and Wear

Dirks, Babette January 2015 (has links)
The life of railway wheels and rails has been decreasing in recent years. This is mainly caused by more traffic and running at higher vehicle speed. A higher speed usually generates higher forces, unless compensated by improved track and vehicle designs, in the wheel-rail contact, resulting in more wear and rolling contact fatigue (RCF) damage to the wheels and rails. As recently as 15 years ago, RCF was not recognised as a serious problem. Nowadays it is a serious problem in many countries and ''artificial wear'' is being used to control the growth of cracks by preventive re-profiling and grinding of, respectively, the wheels and rails.  This can be used because a competition exists between wear and surface initiated RCF: At a high wear rate, RCF does not have the opportunity to develop further. Initiated cracks are in this case worn off and will not be able to propagate deep beneath the surface of the rail or wheel. When wheel-rail damage in terms of wear and RCF can be predicted, measures can be taken to decrease it. For example, the combination of wheel and rail profiles, or the combination of vehicle and track, can be optimised to control the damage. Not only can this lead to lower maintenance costs, but also to a safer system since high potential risks can be detected in advance. This thesis describes the development of a wheel-rail life prediction tool with regard to both wear and surface-initiated RCF. The main goal of this PhD work was to develop such a tool where vehicle-track dynamics simulations are implemented. This way, many different wheel-rail contact conditions which a wheel or a rail will encounter in reality can be taken into account. The wear prediction part of the tool had already been successfully developed by others to be used in combination with multibody simulations. The crack prediction part, however, was more difficult to be used in combination with multibody simulations since crack propagation models are time-consuming. Therefore, more concessions had to be made in the crack propagation part of the tool, since time-consuming detailed modelling of the crack, for example in Finite Elements models, was not an option. The use of simple and fast, but less accurate, crack propagation models is the first step in the development of a wheel-rail life prediction model. Another goal of this work was to verify the wheel-rail prediction tool against measurements of profile and crack development. For this purpose, the wheel profiles of trains running on the Stockholm commuter network have been measured together with the crack development on these wheels. Three train units were selected and their wheels have been measured over a period of more than a year. The maximum running distance for these wheels was 230,000 km. A chosen fatigue model was calibrated against crack and wear measurements of rails to determine two unknown parameters.  The verification of the prediction tool against the wheel measurements, however, showed that one of the calibrated parameters was not valid to predict RCF on wheels. It could be concluded that wheels experience relatively less RCF damage than rails. Once the two parameters were calibrated against the wheel measurements, the prediction tool showed promising results for predicting both wear and RCF and their trade-off. The predicted position of the damage on the tread of the wheel also agreed well with the position found in the measurements. / <p>QC 20150526</p>
279

On wear in rolling/sliding contacts

Nilsson, Rickard January 2005 (has links)
<p>The aim of this thesis is to increase the understanding of wear in rolling/sliding contacts such as the wheel-rail contact for railroads and the roller-washer contact for roller bearings.</p><p>The Stockholm commuter train network has been the subject of papers A and B in this thesis in which the wear and surface cracks on rails has been observed for a period of three years. By comparing the wear depth with the crack length, equilibrium between these two damage mechanisms was found for a lubricated rail. By using a lubricant with friction modifiers the stresses was low enough to prevent crack propagation; at the same time, the rail was hard enough to reduce the wear rate. This is probably the most favourable state in terms of rail maintenance cost.</p><p>Roller bearings subjected to lubricant borne particles have been the subject of papers C, D and E in this thesis. Particles in the lubricating oil can have a significant impact on the wear in lubricated contacts. Even at low concentration levels can self-generated particles cause significant wear. The here presented results shows that filtration during run-in can significantly reduce both the mass loss and the number of self generated particles. A series of experiments has been carried out to study the wear of roller bearings by ingested lubricant borne hard particles. The form of the worn profile and the length of wear scratches correspond closely to the sliding within the contact. A count of the number of wear scratches on the rolling element surface indicates that the contact concentrates particles. A novel wear model based on the observation of a single point on the contacting surface when a concentration of particles passes through it has been developed and the necessary data for the model has been determined from the experiments. Comparison of the simulation results with the experimental results shows good qualitative agreement for the form change of the washer surfaces.</p>
280

Computer simulation of the two body abrasive wear process.

Naicker, Theo. January 2002 (has links)
New computer technologies are applied to the classical material engineering two-body abrasive wear process. The computer simulation provides an interactive and visual representation of the wear process. The influence of grit size, grit tip radius and load (at constant workpiece hardness and tool path) on the wear rate, wear coefficient and wear surface topography is predicted. The simulation implements microcutting and microploughing with material displacement to the sides of the groove. The validation of the simulation is demonstrated by comparing with the previous modelling literature and with experiments. / Thesis (M.Sc.)-University of Natal,Durban, 2002.

Page generated in 0.053 seconds