Spelling suggestions: "subject:"year."" "subject:"near.""
391 |
Multi Scale Contact Mechanics of Bio-Mechanical Systems with inclusion of roughness effect- Fractal AnalysisHodaei, Mohammad 01 August 2015 (has links)
Contact mechanics of rough surfaces and surface wear will be considered. Two types of failures are considered. The first involving rapidly growing failure and the second fatigue type surface failure as a result of repetitive application of load cycle. The first type of failure will be identified based on surface hysteresis energy loss in a load/unload cycle or examination of fracture toughness of the material near its rough surface. The above approach will be used to examine both types of failure in joint implants in the human body. These include consideration of implants for hip, ankle, spine and knee. In this case rapid and/or fatigue failures will be considered and related to anticipated implant life cycle based on implant recipient's tolerance level. Hence surface fidelity in terms of the biological host's tolerance of toxicity level due to wear will be used to develop life cycle prediction of an implant. The second application, rapid and fatigue wear will be examined in commonly used mechanical systems that include spur and helical gearing and rolling element bearings.
|
392 |
IMPACT OF HUMIDITY ON WEAR AND CREEP GROAN OF AUTOMOTIVE BRAKE FRICTION MATERIALSMirzababaei, Saereh 01 December 2016 (has links)
In recent decades, significant requirements of changes in composition of brake friction materials in order for faster and more reliable transportation as well as their environmental friendly characterizations attracted attentions. However, the relation between performance and formulation/composition is not clear since friction processes are accompanied by many complex problems such as instability in the coefficient of friction, noise, vibration and wear. Creep-groan is a low frequency vibration which could originate in different part of the system (vehicle). The resulting resonant vibration in the passenger compartment causes discomfort and often leads to complaints of customers and related increase of warranty costs covered by manufacturers. In spite of relatively large amount of publications addressing the creep-groan phenomena, there is not an universal solution addressing the engineering aspects of brake/vehicle design. In addition, Relevance of wear occurring in brake materials increased particularly with relation to the released chemicals and corresponding health and environmental hazards. It is well known that humidity can considerably modify the adhesion of rubbing counterfaces by creating menisci and increasing the contact area. The chemistry, morphology and phase composition of the friction layers (third body) generated on the friction surfaces could play a determining role when amounts of adsorbed water on brake surfaces is concerned. The friction layer is typically a complex mix of numerous materials and, as a rule, contains the agglomerated or sintered nanoparticles. Hence, quantum effects could further modify the adsorption of water. This work addresses the impact of humidity on wear and creep groan of two commercial brake material types: the so called i) "non-asbestos organic" (NAO) and the ii) "semi-metallic" (SM) brake materials rubbed against pearlitic gray cast iron rotors typically used in the passenger vehicles. The friction and wear tests were performed with the Universal Mechanical Tester (UMT) manufactured by Bruker and the wear surfaces/mechanisms were studied by using of scanning electron microscopy, energy dispersive X-ray microanalysis, and optical topography methods. The applied wear testing conditions were designed as a series of particularly designed drag tests and were performed at several different relative humidity levels ranging between 50% and 80%. The major findings confirmed the considerable effect of humidity on wear of brake materials. Both pad types wore noticeably less at increased humidity. This was ascribed to a better capacity to form a protective friction layer. The complex wear mechanisms including abrasive, adhesive, fatigue, and corrosion wear were observed on both material types, irrespectively of humidity levels, and they dependent on the chemistry and phase composition of the friction layer. Humidity also influenced the level of friction.
|
393 |
Estudo do desgaste de rodas de pontes rolantes utilizadas em siderurgiaCunha, José Thiago da January 2012 (has links)
O atual cenário competitivo do mercado siderúrgico exige que os custos industriais sejam minimizados ao máximo a fim de garantir o retorno aos acionistas e, em última análise, até mesmo a sobrevivência das companhias em certos mercados. Neste contexto, o homem de manutenção passa a exercer papel fundamental no sentido de trabalhar para evitar perdas, sejam por paradas inesperadas de produção ou por estratégias incorretas de manutenção, buscando conhecer melhor seus equipamentos e introduzir melhorias no projeto de forma a reduzir custos de manutenção e aumentar sua confiabilidade. Este trabalho tem o objetivo de fazer um estudo teórico-prático com a finalidade de conhecer os mecanismos de desgaste envolvidos na interface roda-trilho de pontes rolantes utilizadas em siderurgia a fim de se implementar melhorias no projeto destas rodas e estender a sua vida útil, reduzindo assim custos de manutenção e os prejuízos causado por interrupções não programadas de produção. Inicialmente, é feita uma revisão bibliográfica sobre o tema, sobretudo quanto ao desgaste mecânico e a interface roda-trilho. Como um típico sistema de desgaste mecânico, a abordagem foi feita analisando a influência das condições de superfície, de material e geometria. Com a condição de material fixada (roda e trilho), definiu-se analisar experimentalmente a influência da condição de lubrificação e da geometria das rodas, produzindo ao todo quatro experimentos. As rodas foram dimensionadas e colocadas em operação sob as mesmas condições e o seu desgaste foi monitorado na mesma base de tempo. Os resultados apontaram que a lubrificação exerce influência predominante na vida da roda, estendendo consistentemente sua vida útil, enquanto que a alteração de geometria exerce influência secundária, porém ainda com alguma contribuição. / The current competitive steel market requires that manufacturing costs are minimized to the maximum to ensure the return to shareholders and, ultimately, even the survival of companies in certain markets. In this context, the maintenance man begins to exercise its role in order to work to avoid losses, whether by unexpected production stoppages or incorrect maintenance strategies, seeking to better understand their equipment and make improvements in design to reduce maintenance costs and increase its reliability. This work aims to make a theoretical study and a practical evaluation in order to understand the wear mechanisms involved in the wheel-rail interface of overhead cranes used in the steel making industry in order to implement improvements in the design of these wheels with a view of extending life and reduce maintenance costs as well as losses due to unscheduled production interruptions. We begin with a literature review on the subject, focusing on the mechanical wear and wheel-rail interface. As a typical system of mechanical wear, the approach was made by analyzing the influence of surface conditions, material and geometry. With the condition of fixed material (wheel and rail), it was decided to analyze experimentally the influence of the lubrication condition and geometry of the wheels, producing a total of four experiments. The wheels were measured and made to operate under the same conditions and wear was monitored at the same time base. The results indicated that lubrication has a predominant influence in the life of the wheels, consistently extending its useful life, while the change in geometry influences secondary, but still with some contribution.
|
394 |
Analýza trestné činnosti v bankovnictví / The analysis of crime in the bankingSMRČKOVÁ, Radka January 2013 (has links)
-The thesis was focused on the analysis of damage and wear of coins and banknotes. And then there was analyzed the counterfeiting of the Czech banknotes and coins. All analyzed date were summarized in the tables and in the graphs. This analysis of the Czech crowns was compared with the same analysis of the euro bankonetes. The counterfeiting of money is not the only crime in the banking. The next possibility of the crime in the banking is the skimming of ATM (automatic teller machine). The one of parts of thesis was focused on it. There was performed the analysis of the number of cases of skimming in Czech Republic. This was compared with the analysis of the number of cases of skimming in European Union too.
|
395 |
Avaliação da resistência ao desgaste de uma resina composta odontológica nanoparticulada empregando diferentes tempos de fotopolimerizaçãoSouza, Celso Naves de [UNESP] 10 November 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:51Z (GMT). No. of bitstreams: 0
Previous issue date: 2009-11-10Bitstream added on 2014-06-13T19:22:34Z : No. of bitstreams: 1
souza_cn_dr_guara.pdf: 5417862 bytes, checksum: 45f7392a335fde8b9a67ef7d60be0ce9 (MD5) / Este trabalho tem como objetivo avaliar a influência dos tempos de fotopolimerização nas resinas odontológicas, onde quatro resinas compostas foram utilizadas, sendo três micro híbridas e uma nanoparticulada. Esses compósitos foram submetidos ao desgaste abrasivo de esfera rotativa pelo método de ball cratering. Para tal ação foi projetado e construído um dispositivo de desgaste por micro abrasão de esfera rotativa livre de três corpos. Os corpos de prova foram confeccionados e embutidos em uma matriz de alumínio, com uma profundidade de 2mm. Usam-se o aparelho LED RADII, com os tempos de exposição de 20, 30 e 40 segundos e uma esfera com 15 mm de diâmetro de aço temperada, retificada e revenida. A lama abrasiva utilizada nesse estudo foi uma solução composta por 20% de talco (USP/200) e 80% de soro fisiológico, na quantidade de 3 gotas por segundo. Para comprovação dos resultados obtidos, utilizaram-se os testes de: Espectroscopia por Dispersão de Energia (EDS), Infravermelho por Transformada de Fourier (FT-IR), Análise Termogravimétrica (TGA), micro dureza Vickers, ensaio de desgaste de micro abrasão por esfera rotativa pelo método de ball cratering e a análise da superfície desgastada por Microscopia Eletrônica de Varredura (MEV). Esta análise foi realizada para verificar o real mecanismo de desgaste ocorrido. Os resultados obtidos comprovam que o tempo recomendado pelos fabricantes, tem a capacidade suficiente de fotopolimerizar toda a matriz orgânica, comprovaram também que a resina nanoparticulada obteve em todos os ensaios os melhores resultados em relação às resinas híbridas, e que a cultura do acréscimo de até 20s além do recomendado não tem influência direta em relação ao desgaste abrasivo. / This work has as an objective to evaluate the influence of photopolymerization in odontological resins, where composed four resins were used, being three of them micro hybrid and one nanoparticulated. These composites were submitted to abrasive wear and tear of rotative sphere by the method ball cratering. For such action a device of micro abrasion of rotative sphere was designed and built free of three bodies. The bodies of proof were produced and put in a matrix of aluminum with a depth of 2mm. The device used was a LED RADII, with exposition time of 20, 30 and 40 seconds and a sphere of 15mm diameter made of tempered steel, rectified and soften, the abrasive lama used in this study was a solution composed by 20% of powder (USP/200) and 80% of physiological serum released at 3 drops per second. For verification of the results obtained the tests of Energy Dispersion Spectrograph (EDS) was used, transformed Infra red of Fourier (FT-IR), Thermogravimetric Analysis (TGA) Vickers micro hardness, wear and tear of micro abrasion by rotative sphere by the method ball cratering and the analysis of worn superficies by Sweeping Electronic Microscopy (SEM). This analysis was carried out to verify the real mechanism of the worn occurred. The results obtained prove that the time recommended by the manufacturer has enough capacity to photopolymerized all the organic matrix, it also proved that the resin nanoparticulated obtained in all the essays the best results in what concerns to the hybrid resins. And the culture of the addition of 20 seconds besides what is recommended has no direct influence in relation to the abrasive wear and tear.
|
396 |
A computational approach to fretting wear prediction in total hip replacementsAshkanfar, Ariyan January 2015 (has links)
A challenge in engineering coupling design is the understanding of performance of contact geometry for a given application. “Wear” is one of a number of mechanical failures that can occur in mechanical coupling design. “Fretting wear” occurs where surfaces in contact are subjected to oscillating load and very small relative motion over a period of time. Fretting has been observed in many mechanical interactions and is known to be a reason for failure in many designs. Recent evidence suggests that fretting wear occurs at the taper junction of modular total hip replacements and leads to failure of the implants. Experimental testing to determine the wear behaviour that occurs in mechanical devices is time consuming, expensive and complicated. Computational wear modelling is an alternative method which is faster and cheaper than real testing and can be used in addition to testing to help improve component design and enhance wear characteristics. Developing an algorithm that can accurately predict fretting wear considering linear wear, volumetric wear and surface wear damage is the main focus of this thesis. The thesis proposes a new computational methodology incorporating published wear laws into commercial finite element code to predict fretting wear which could occur at the taper junction of total hip replacements. The assessment of wear in this study is solely based on mechanical wear (fretting) as being the primary mechanism causing surface damage. The method is novel in that it simulates the weakening of the initial taper ‘fixation’ (created at impaction of the head onto the stem in surgery) due to the wearing process. The taper fixation is modelled using a contact analysis with overlapped meshes at the taper junction. The reduction in fixation is modelled by progressive removal of the overlap between components based on calculated wear depth and material loss. The method has been used for three different studies to determine surface wear damage, linear and volumetric wear rates that could occur at taper junction of total hip replacements over time. The results obtained are consistent with those found from observation and measurement of retrieved prostheses. The fretting wear analysis approach has been shown to model the evolution of wear effectively; however, it has been shown that accurate, quantitative values for wear are critically dependant on mesh refinement, wear fraction and scaling factor, wear coefficient used and knowledge of the device loading history. The numerical method presented could be used to consider the effect of design changes and clinical technique on subsequent fretting wear in modular prosthetic devices or other mechanically coupled designs.
|
397 |
Obtencao usinagem e desgaste de materiais compositos de matriz metalica processados via metalurgia do poJESUS, EDILSON R.B. de 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:43:18Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:58:28Z (GMT). No. of bitstreams: 0 / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
398 |
Estudo do desgaste de aneis de segmento de motores de combustao interna pela tecnica dos tracadores radioativosSANCHEZ, WLADIMYR 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:29:27Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:00:42Z (GMT). No. of bitstreams: 1
12896.pdf: 2978744 bytes, checksum: d7e5ccc0fe4014d76824c630b7e26cb8 (MD5) / Dissertacao (Mestrado) / IEA/D / Escola Politecnica, Universidade de Sao Paulo - POLI/USP
|
399 |
Estudo do desgaste de rodas de pontes rolantes utilizadas em siderurgiaCunha, José Thiago da January 2012 (has links)
O atual cenário competitivo do mercado siderúrgico exige que os custos industriais sejam minimizados ao máximo a fim de garantir o retorno aos acionistas e, em última análise, até mesmo a sobrevivência das companhias em certos mercados. Neste contexto, o homem de manutenção passa a exercer papel fundamental no sentido de trabalhar para evitar perdas, sejam por paradas inesperadas de produção ou por estratégias incorretas de manutenção, buscando conhecer melhor seus equipamentos e introduzir melhorias no projeto de forma a reduzir custos de manutenção e aumentar sua confiabilidade. Este trabalho tem o objetivo de fazer um estudo teórico-prático com a finalidade de conhecer os mecanismos de desgaste envolvidos na interface roda-trilho de pontes rolantes utilizadas em siderurgia a fim de se implementar melhorias no projeto destas rodas e estender a sua vida útil, reduzindo assim custos de manutenção e os prejuízos causado por interrupções não programadas de produção. Inicialmente, é feita uma revisão bibliográfica sobre o tema, sobretudo quanto ao desgaste mecânico e a interface roda-trilho. Como um típico sistema de desgaste mecânico, a abordagem foi feita analisando a influência das condições de superfície, de material e geometria. Com a condição de material fixada (roda e trilho), definiu-se analisar experimentalmente a influência da condição de lubrificação e da geometria das rodas, produzindo ao todo quatro experimentos. As rodas foram dimensionadas e colocadas em operação sob as mesmas condições e o seu desgaste foi monitorado na mesma base de tempo. Os resultados apontaram que a lubrificação exerce influência predominante na vida da roda, estendendo consistentemente sua vida útil, enquanto que a alteração de geometria exerce influência secundária, porém ainda com alguma contribuição. / The current competitive steel market requires that manufacturing costs are minimized to the maximum to ensure the return to shareholders and, ultimately, even the survival of companies in certain markets. In this context, the maintenance man begins to exercise its role in order to work to avoid losses, whether by unexpected production stoppages or incorrect maintenance strategies, seeking to better understand their equipment and make improvements in design to reduce maintenance costs and increase its reliability. This work aims to make a theoretical study and a practical evaluation in order to understand the wear mechanisms involved in the wheel-rail interface of overhead cranes used in the steel making industry in order to implement improvements in the design of these wheels with a view of extending life and reduce maintenance costs as well as losses due to unscheduled production interruptions. We begin with a literature review on the subject, focusing on the mechanical wear and wheel-rail interface. As a typical system of mechanical wear, the approach was made by analyzing the influence of surface conditions, material and geometry. With the condition of fixed material (wheel and rail), it was decided to analyze experimentally the influence of the lubrication condition and geometry of the wheels, producing a total of four experiments. The wheels were measured and made to operate under the same conditions and wear was monitored at the same time base. The results indicated that lubrication has a predominant influence in the life of the wheels, consistently extending its useful life, while the change in geometry influences secondary, but still with some contribution.
|
400 |
Caractérisation des mécanismes d'usure par tribocorrosion d'alliages modèles Ni-Cr / Characterization of wear mechanism by tribocorrosion of nickel base alloysIonescu, Claudiu Constantin 19 November 2012 (has links)
Les alliages à base nickel sont utilisés dans les centrales nucléaires pour la fabrication des tubes générateurs de vapeur, parce qu’ils présentent une bonne résistance aux sollicitations mécaniques élevées dans un milieu corrosif à haute température. La résistance au milieu corrosif est attribuée à une couche protectrice très fine de Cr2O3 qui se forme à la surface de l’alliage. Les tubes générateurs de vapeur comptent parmi les composants les plus délicats à entretenir, d’une part, du fait de leur importance pour la sûreté et, d’autre part, parce que les tubes d’échange sont soumis à de nombreux mécanismes de dégradation à cause de conditions sévères de fonctionnement.. L’objectif de cette étude a été d’évaluer et de comparer le comportement en tribocorrosion de deux alliages modèles Ni – 15%Cr et Ni – 30%Cr. Ces alliages ont été utilisés pour mettre en évidence, évaluer et comparer l’influence de la teneur en chrome sur la formation de la couche d'oxyde superficielle et le rôle de cette dernière sur les mécanismes et cinétiques d'usure par tribocorrosion. L’étude de la tribocorrosion a été effectuée à l’aide d’un tribomètre pion – disque par application d’un frottement unidirectionnel, en régime continu et intermittent en milieu aqueux boré – lithié à la température ambiante. La dégradation de la couche protectrice formée à la surface des deux alliages a été suivie en mettant en œuvre un protocole expérimental en trois étapes. Dans la première étape du protocole, le suivi de l’évolution du potentiel libre et l’enregistrement des diagrammes d’impédance électrochimique ont été utilisés pour analyser le comportement électrochimique des deux alliages en absence de frottement. Lors de la deuxième étape, les mêmes techniques électrochimiques ont été employées en présence d’un frottement continu et pour différentes pressions de contact. Durant l’étape trois du protocole, des essais de tribocorrosion en régime de frottement intermittent ont été réalisés pour mettre en évidence la capacité d’auto cicatrisation de la surface des deux alliages modèles. Pour les deux alliages Ni - Cr, les essais de tribocorrosion ont mis en évidence une augmentation de l’usure totale avec la pression de contact appliquée. Quel que soit la force normale appliquée, la principale composante de l’usure totale est l’usure mécanique du substrat mis à nu. L’usure purement corrosive du substrat diminue avec l’augmentation de la teneur en chrome. Du point de vue qualitatif, le principal mécanisme d’usure identifié a été l’usure abrasive par micro - labourage. Dans cette étude a été effectuée une étude de l’usure d’alliages modèles Ni – Cr, dans les conditions de tribocorosion, ainsi que une analyse du mécanisme et la cinétique d’usure. Le comportement de la couche superficielle d’oxyde de chrome et son effet sur la résistance à la tribocorrosion ont été évalués. Ces résultats peuvent servir de base à la compréhension de l’origine des problèmes qui peuvent apparaître pendant la vie d’un alliage inoxydable à base nickel soumis à des efforts mécaniques en milieu agressifs et permettre une sélection plus pertinente des matériaux métalliques pour diverses applications industrielles, particulièrement dans le domaine nucléaire. / Some components of nuclear power plants, as steam generator tubes are made from Ni base alloys. These components are exposed to severe environment of high temperature and high pressure and submitted to contact mechanical stresses. These Ni – based alloys properties are determined by their ability to form on their surface an inner protective barrier film mainly composed of Cr2O3. The steam generator tubes are among the most difficult components to maintain, on the hand, because of their safety importance and secondly, the exchange tubes are subject to various degradation mechanisms, because of the harsh conditions of work. Wear by tribocorrosion is a physicochemical aging mechanism which occurs in the management of the nuclear power plants life time.Tribocorrosion is an irreversible process which involves mechanical and chemical / electrochemical interactions between surfaces in relative motion, in the presence of a corrosive environment. The goal of this study was to quantify in terms of quantity and quality the wear generated by tribocorrosion process on Ni – Cr model alloys. Two model alloys: Ni -15Cr and Ni -30Cr were used to highlight, evaluate and compare the influence of the chromium content on the formation of the protective oxide layer and the role played by the latter one on the kinetics and mechanisms of wear by tribocorrosion. The tribocorrosion experiments were performed by using a pin -on–disc tribometer under controlled electrochemical conditions in LiOH – H3BO3 solution. The corrosion – wear degradation of the protective layer during continuous and intermittent unidirectional sliding tests was investigated by a three-stage tribocorrosion protocol. In the first stage, electrochemical techniques (open circuit potential measurements and electrochemical impedance measurements) were used without applying unidirectional sliding to monitor and evaluate the characteristics of protective oxide layer formed on the surface of the two model alloys. In the second stage, the same electrochemical techniques were employed during the application of the unidirectional sliding test to evaluate the total material loss for different applied contact pressures. In the last stage of the experimental procedure the self healing process was investigated by intermittent unidirectional sliding tests.The total material loss after a tribocorrosion experiment, determined by profilometric measurements, is the sum of two components: the material loss due to corrosion of active material in the wear track, which can be calculated fro, the corrosion current values given by impedance measurements; applying Faraday’s law, and the material loss due to mechanical wear, the difference between total material loss and the material loss due to corrosive wear. Experiments proved that the total material loss increases with the increase of the contact pressure in both cases of Ni – Cr model alloys. The prevailing contribution in the total volumetric material loss is the material loss due to mechanical wear of active material in the sliding track. Nevertheless, the increase of the chromium content improves the resistance to the corrosive wear of active material in the sliding track. From qualitative viewpoint, a mechanism of abrasive wear by micro-ploughing was revealed in the sliding tracks.
|
Page generated in 0.047 seconds