• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 289
  • 178
  • 106
  • 32
  • 32
  • 32
  • 32
  • 32
  • 32
  • 16
  • 14
  • 9
  • 6
  • 4
  • 3
  • Tagged with
  • 802
  • 264
  • 130
  • 119
  • 117
  • 115
  • 115
  • 109
  • 105
  • 99
  • 95
  • 82
  • 73
  • 63
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Métodos para identificação de moléculas com atividade herbicida com ênfase na rota de síntese de carotenóides

Corniani, Natália [UNESP] 16 December 2013 (has links) (PDF)
Made available in DSpace on 2014-12-02T11:16:48Z (GMT). No. of bitstreams: 0 Previous issue date: 2013-12-16Bitstream added on 2014-12-02T11:21:34Z : No. of bitstreams: 1 000791661.pdf: 1737518 bytes, checksum: 464412e37c4fc4ba49aaa1f2a009d1c3 (MD5) / O manejo de plantas daninhas é um aspecto importante da produção agrícola. A introdução de herbicidas sintéticos, em meados do século 20, tornou o controle de plantas daninhas menos dispendioso e mais eficaz. A introdução de culturas transgênicas resistentes a herbicidas não-seletivos (por exemplo, glifosato e glufosinato) reforçou o estabelecimento dos herbicidas como a principal tecnologia usada para controle em grande escala de plantas daninhas na produção agrícola mundial. No entanto, a pressão de seleção imposta pelos herbicidas levou à evolução generalizada de resistência em populações de plantas daninhas, o que representa uma grande ameaça para a sustentabilidade e rentabilidade dos sistemas de cultivo. Testes confiáveis para a detecção de resistência são pré-requisito para a implementação de estratégias de controle integrado eficazes. Há demanda crescente dos produtores por testes para diagnosticar a resistência de plantas daninhas e aprender a gerenciá-la. Os cientistas desenvolveram protocolos de teste de resistência para inúmeros herbicidas, mas, no Brasil, não há nenhum trabalho compilando essas informações. A evolução da resistência tem também acentuado a necessidade de produtos com novos mecanismos de ação para complementar a falta de atividade dos herbicidas atuais. A rota do metileritritol fosfato (MEP) representa um dos alvos mais promissores para o desenvolvimento de novos herbicidas, bem como para melhorar o valor nutricional de culturas agrícolas. No entanto, há apenas um herbicida comercial, clomazone, alvejando esta rota. Portanto, o primeiro capítulo do presente trabalho consiste em uma compilação de ensaios para medir a atividade de enzimas-alvo e caracterização de resistência de plantas a todos os modos de ação de herbicidas conhecidos. Uma vez que não havia descrito nenhum ensaio in vivo para testar ... / Weed management has always been an important aspect of crop production. The introduction of synthetic herbicides in the mid-20th century has made weed control less expensive and more effective. The introduction of transgenic crops resistant to non-selective synthetic herbicides (e.g., glyphosate and glufosinate) further established the reliance on herbicides as the dominant technology used for large-scale weed control in production agriculture worldwide. However, the selection pressure imposed by herbicides has led to the widespread evolution of herbicide resistance in weed populations, which is a major threat to the sustainability and profitability of cropping systems. Reliable tests for resistance are an essential pre-requisite for the rational implementation of effective integrated control strategies. There is increasing demand from growers to test for weed resistance and learn how to manage it. Scientists have developed resistance-testing protocols for numerous herbicides but, in Brazil, there is no review compiling this information. Evolution of herbicide resistance is also underscoring the need for herbicides with new modes of action to complement those herbicides failing due to resistance. The 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway represents one of the most promising targets to develop new herbicides as well as targets to improve the nutritional value of crop plants. However, there is just one commercial herbicide, clomazone, targeting it. Therefore, in the first chapter of this study there is a compilation of assays to measure the activity of key target enzymes and characterization of plant resistance to all known herbicides mode of action. Since no in vivo assay was available for testing inhibitors of MEP pathway, in the second chapter it is described the development of a rapid, accurate, cheap, readily available leaf disc assay based on the measurement of the carbon ...
242

Emulsion-formulation of microbial herbicides

Potyka, Ingrid January 1995 (has links)
Development of microbial herbicides is constrained by unreliability in the field where conditions are often sub-optimal for infection. Crucially, sufficient moisture, often dew, is required to establish infection. Two model systems, Colletotrichum dematium (Pers. ex Fr. ) Grove on Chenopodium album L. and Mycocentrospora acerina (Hartig) Deighton on Viola arvensis Murr., have been investigated and formulation requirements for each system identified, principally to reduce the dew period necessary for infection. Effects of adjuvants (surfactants, stickers and humectants) on spore germination and appressorium formation were investigated in vitro. Few were toxic and then, principally, at high concentration. The surfactants Tween 40,60 and 80 were compatible with both pathogens. Similarly, the stickers acacia, ghatti, guar, karaya, locust bean and xanthan gums and low viscosity alginic acid were all non-toxic as was the humectant glycerol. Each pathogen reacted differently to the adjuvants and any potential microbial herbicide will need individual matching of adjuvants to give an effective formulation. A working formulation (rapeseed oil-in-water (1: 10 v/v) emulsion using 0.1 % v/v Tween 40 as the emulsifier) was found to reduce the dew period requirement of M. acerina from 36 to 18 hours. The formulation protected spores from desiccation for 24 hours after application, or for 16 hours following a sub-optimum dew period occurring immediately after application. Scanning electron microscopy showed that the applied spores, and the developing mycelium, were immersed in the oil deposit. Transmission electron microscopy of sections through formulation deposits on the leaf revealed that some inversion of the emulsion, to form a water-inoil deposit, had occurred, suggesting a mechanism of protection against desiccation. The oil phase infiltrated the cortical intercellular spaces only when the leaf was infected. This intercellular oil contained more water than that on the leaf surface. Emulsion-formulation applied to run-off with an 'air brush', consistently gave significantly better weed control under sub-optimal dew conditions than a formulation of surfactant only. When applied with a conventional hydraulic nozzle at 400 1 ha" the emulsion was only occasionally superior to the surfactant alone. Such interactions require further in-depth investigation. The importance of correct inoculum placement for maximum effectiveness, independent of formulation type, was highlighted. Unless all meristems are killed, survivors quickly grow, despite the death of neighbouring leaves and petioles, and the weed suffers merely a growth check. Formulation as emulsion improved diseasee stablishmenta nd diseasee xpressioni n the target weedo nly in somec ircumstancesF. urther researchin to spraya pplicationm ethodsa ndt heir interactions with formulation, host and environment is clearly necessary
243

The application of triploid grass carp, as biological control agent for the over-abundant growth of aquatic weeds in irrigation canal systems

Du Plessis, Barend Jakobus 11 September 2008 (has links)
The overabundant proliferation of aquatic weeds in South African water conveyance systems cause a series of operational problems. Filamentous algae, such as Cladophora glomerata and pondweeds impede flow and reduce the capacity of irrigation canals to a significant extent. In worst case scenarios, irrigation scheme managers are faced with situations where they are unable to deliver water at the downstream ends of canal systems. This situation also contributes to water losses, crop losses and structural damage to concrete-lined canals. This dissertation is the product of a research project funded by the Water Research Commission to investigate the possible application of sterile (triploid) grass carp (Ctenopharyngodon idella) as biological control agent on aquatic weeds in concrete-lined irrigation canals. The aims of the project were firstly to investigate the suitability of a concrete-lined irrigation canal as grass carp habitat; secondly to test the efficacy of sterile grass carp as bio-control agent on filamentous algae; thirdly to evaluate the economic feasibility of this biological approach against the current chemical, physical and mechanical control methods; and fourthly to propose a management plan for the operational application of triploid grass carp as bio-control agent in irrigation canals. To achieve the goals set for the project, the Ramah-3 Canal near the town of Orania, was selected to serve as experimental canal. This canal can be regarded as a typical South African concrete-lined canal, and is located in the Orange-Riet River Canal System, downstream of the Vanderkloof Dam. As the majority of local irrigation canals are concrete-lined, skepticism existed amongst local scientists if the fish will be able survive in canals with a presumed high constant flow and low diversity of hydraulic biotopes. It was therefore a priority to establish the suitability of concrete-lined canals as habitat for this herbivorous fish specie. The study found that flow velocities in the Ramah Canal System never exceeded 1 m/s, even under high flow conditions (full capacity and 110% plus conditions) of more than 5 m3/s. It was found that grass carp thrived at flow rates ranging from 0.48 to 0.80 m/s, moving with ease upstream and downstream in a 16 km long experimental section of the Ramah-3 Canal. The sterile grass carp controlled the algal biomass in the Ramah Canal to significant levels. Cladophora was efficiently controlled at stocking rates of 3 to 7 fish per km canal. Triploid grass carp retrieved from the canal system after a six-month experimental period were found to be in an excellent physiological condition and displayed a mean weight increase of more than 300%. An ideal stocking protocol will probably be 10 individuals of 20 – 30 cm in length per kilometer canal, with a 10-15% annual supplementation figure. Civil structures, such as culverts, super-elevated canals and bridges will provide the fish with sufficient protection against possible predators. A few possible adaptations to the existing canal operation regimes should ensure that triploid grass carp could be managed as an effective biological control agent. This should be determined on a site-specific basis and could include additional civil structures such as sanctuary dams and small in-line fishways to ensure free migration throughout the target system. An attempt was made to conduct a brief economic analysis, based on information on expenditures of local irrigation schemes on aquatic weed control in their canals. The outcome of this brief investigation was in line with overseas findings in that biological control with sterile grass carp will be more economical than the currently applied control methods of herbicidal and mechanical or physical control. It can be concluded that the fish adapted to the artificial conditions experienced in a concrete-lined canal and perform their task as bio-control agent with ease. The author is of the opinion that this bio-control technique will contribute to the current Integrated Aquatic Weed Management Programmes (IAWMPs) of the Department of Water Affairs and Forestry. Site-specific conditions for each irrigation scheme will however, dictate a different approach to the aquatic weed problem. It is therefore strongly recommended that suitable qualified specialists should develop all aquatic weed management programmes on a site-specific basis. / Prof. G.J. Steyn
244

The biological control of Hakea sericea Schrader by the Hakea seed-moth, Carposina autologa Meyrick, in South Africa

Gordon, Antony John January 1993 (has links)
Hakea sericea Schrader was introduced to South Africa from Australia and has become a major problem in nearly all the coastal mountain ranges of the Cape Province. The hakea seed-moth, Carposina autologa Meyrick was released in South Africa for the biological control of H. sericea. The impact of the moth on the canopy-stored seeds of H. sericea was evaluated at two study sites in the south-western Cape over three years. The moth has reduced the accumulated seeds at the two study sites by 59.4% and 42.6%, respectively. The moth has shown a surprising ability to disperse and establish new colonies at low population levels. Factors contributing to the slow colonization of C. autologa in South Africa was investigated. The moths appear to be unable to distinguish between healthy and previously attacked fruits; 42.5% of the eggs were laid on attacked fruits. Only 13.1% of the healthy fruits with eggs yielded mature larvae. The high pre-penetration mortality found in the present study is similar to that found in Australia. The effect of the indigenous fungus, Colletotrichum gloeosporioides (Penz.) Sacc., on both H. sericea and C. autologa was investigated. H. sericea trees and branches that die as a result of fungus cause the accumulated fruits on the affected trees or branches to dehisce. This seed loss occurs at a crucial stage during C. autologa larval development. Only 42.1% and 33.0% of the trees were found to be healthy at the two study sites, respectively. One seed crop will always be available for regeneration, since recruitment is linked to fires, and wild-fires occur at a stage when the latest seed crop has escaped attack by c. autologa. C. autologa was released at six sites in the south-western Cape by attaching egg-bearing follicles to healthy fruits in the field. Three release sites were evaluated the year following release to determine whether the moth established or not. The role of C. autologa in the H. sericea biological control programme is discussed. Although seed destruction by C. autologa is not severe, it is expected to contribute to the control of H. sericea.
245

Pre-release studies on Zophodia Tapiacola (Dyar) (Pyralidae : Lepidoptera) : a biological control agent against jointed cactus, Optuntia Aurantiaca Lindley

Hoffmann, J. H. January 1976 (has links)
Jointed Cactus, Opuntia aurantiaca Lindley (see frontispiece), is the most important weed plant in South Africa, infesting approximately, 1,2 X 10¹° M² and costing approximately R240 000 per annum. Tordon herbicide effectively kills jointed cactus bushes to which it is applied. However, apart from being expensive and damaging to beneficial vegetation, spray programmes have not successfully controlled the weed because most small O. aurantiaca plants are impossible to detect in the field. Biological control may provide a solution to the problem. Two insects, the cochineal bug, Dactylopius austrinus De Lotto and the pyralid moth, Cactoblastis cactorum Berg., already exercise a degree of control over the weed. The introduction into South Africa of other natural enemies such as Zophodia tapiacola (Dyar) from Argentina, South America, may reduce the density of jointed cactus to below an acceptable economic threshold. Any insect considered for release should not colonise and destroy beneficial plants of which the culivated spineless cacti are the most vulnerable. Pre-release studies on Z. tapiacola have shown that it can only colonise a few species of low growing cacti and that it will not damage the large spineless cacti or other desirable plants. Further, the moths are relatively fecund and each larva destroys significant amounts of O. aurantiaca during its development. Consequently, Z. tapiacola is not only considered safe for release but it has the potential to act as a successful biological control agent of O. aurantiaca in South Africa.
246

Impact of biocontrol agents on Lantana camara L. (Verbenaceae) in the lowveld region of Mpumalanga, South Africa

Katembo, Naweji January 2018 (has links)
A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the academic requirements for the degree of Doctor of Philosophy School of Animal, Plant and Environmental Sciences. Johannesburg, June 2018. / Lantana camara L. (sensu lato) (Verbenaceae) remains one of the worst invasive alien plants in most tropical and subtropical parts of the world, including South Africa. Despite a concerted biological control (biocontrol) effort, with 45 biocontrol agents released against the weed worldwide since the early 1900s to date, L. camara control is far from satisfactory in most areas, including the study area. In 2012, during the initial stage of this work, a plant-ecological survey was conducted in riparian areas along the Sabie River, across an altitudinal gradient, and also in the adjacent forest plantation areas, in the province of Mpumalanga (South Africa). As a follow-up to two separate previous studies in the same area (1996/7 and 2005), aimed at determining the effectiveness of the ‘Working for Water’s (WfW) invasive alien plant (IAP) control programme, this work is another milestone in a long-term monitoring study. However, despite 16 years (1996/7-2012) of integrated IAP-control operations in the area, the WfW programme was only able to successfully remove larger overstorey IAPs, which opened-up the canopy and reduced competition, creating a conducive growing environment for an amalgamation of understorey IAPs, including L. camara, whose spread and densification were still on the rise. Biocontrol is regarded as a better alternative for long-term, sustainable and environmentally friendly IAP control, compared to the conventional mechanical and chemical methods. Most L. camara biocontrol agents introduced into South Africa have not yet had their full impact quantified under field conditions. This work is novel in that, for the first time, it quantifies the combined impact of the ‘old plus new’ suite of L. camara biocontrol agents, on the growth, reproduction and biomass of the weed under field conditions, in an inland area, through an insecticidal exclusion experiment, using carbofuran. Five prominent biocontrol agents occur on L. camara at the study sites, namely the fruit-mining fly, Ophiomyia lantanae (Froggatt) (Diptera: Agromyzidae); the shoot-sucking bug, Teleonemia scrupulosa Stål (Hemiptera: Tingidae); the defoliating moth, Hypena laceratalis Walker (Lepidoptera: Noctuidae); the leaf-mining beetle, Octotoma scabripennis Guèrin-Mèneville (Coleoptera: Chrysomelidae); and the fungal leaf-spot pathogen, cf. Passalora sp. (Chupp) U. Braun & Crous var. lantanae. During the course of this study, an additional agent, the flower-galling mite, Aceria lantanae (Cook) (Acari: Trombidiformes: Eriophyidae), was released and successfully established at lower altitudes (~843 m), showing an affinity for the dark-pink L. camara variety over others in the study area, namely light-pink and red-orange. Agent impact was difficult to measure because the activity of carbofuran in exclusion plants (carbofuran-treated L. camara plants) was short-lived; and therefore the impact of biocontrol agents on L. camara, which appeared to be negligible, may have been underestimated. Despite failing to maintain the ‘exclusion’ plants biocontrol agent-free through the application of carbofuran, there were reductions of 28% in the number of side-stems per plant, 31% fewer seeds in the soil seedbank, and 29% lower seed production, in ‘biocontrol’ plants compared to ‘exclusion’ plants. Although these differences were not statistically significant, they suggest that the present suite of biocontrol agents slightly reduces the vegetative and reproductive growth of L. camara. To achieve significant biocontrol of L. camara in inland areas, it seems necessary to introduce additional agents, which are well adapted to inland climatic conditions. The effects of micro-environmental factors, namely altitude and the degree of shading, were also investigated. Some biocontrol agents, such as T. scrupulosa, exhibited feeding phenological plasticity, resulting in it maintaining its presence at different altitudinal levels throughout the seasons. The performance of the suite of biocontrol agents, except A. lantanae, was, also, not limited by plant varietal differences. Additional research on biological and integrated control of L. camara is required. Keywords: Biocontrol; Biological invasion; Carbofuran; Insecticidal exclusion; Invasive alien plants; Lantana camara; Post-release evaluation. / LG2018
247

Effect of the fungal pathogen, Colletotrichum coccodes (Wallr.) Hughes, on growth, reproduction and competitive ability of velvetleaf (Abutilon theophrasti Medik.)

DiTommaso, Antonio January 1995 (has links)
No description available.
248

Formulation of Colletotrichum coccodes as a bioherbicide

Saad, Fadia January 1993 (has links)
No description available.
249

Population dynamics of yellow nutsedge (Cyperus esculentus L.)

Cloutier, Daniel. January 1986 (has links)
No description available.
250

Control of hexazinone tolerant weeds in lowbush blueberries

Howatt, Stephen M. (Stephen Michael) January 1992 (has links)
No description available.

Page generated in 0.0346 seconds