• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reactive MgO and self-healing microcapsules for enhanced well cement performance

Mao, Wenting January 2019 (has links)
The annular cement sheath plays a crucial role in ensuring well integrity by providing adequate zonal isolation, stabilizing the formation, and protecting the casing from corrosion. A majority of well integrity problems originate from oil well cement shrinkage and shrinkage-induced cracking, as well as cracking induced by other external stresses. The addition of expansive additives is a commonly used way to compensate for shrinkage. Compared to conventional ettringite-based and CaO-based expansive additives, MgO has many advantages including a thermally stable hydration product, relatively low water requirements for hydration, and designable expansion properties. These make MgO a promising candidate for delivering the desired expansion under the complex and variable underground wellbore environment. Self-healing materials which have the capability for autonomous crack repair are an attractive solution for addressing cracking problems in oil well cement. Engineered additions of healing agents for autonomic self-healing via a delivery system have been reported as effective ways to promote self-healing in cementitious materials. Microcapsules that can be easily added to cement pastes and dispersed through the cement matrix are considered particularly suitable for use in oil well cement. This research project investigates the efficacy of reactive MgO expansive additives to reduce shrinkage, and of sodium silicate microcapsules to improve the self-healing properties of oil well cement, and explores the feasibility of their combined use in a high temperature oil well environment. Three types of reactive MgOs from different reactivity grades, high reactivity N50, medium reactivity MAG-R, and low reactivity 92/200, were characterised in terms of their expansion characteristics in cement paste prisms cured in water, and further tested on their autogenous shrinkage reduction at 80oC. The highly reactive N50 could only partially compensate for autogenous shrinkage, while the less reactive MAG-R and 92/200 completely compensated for autogenous shrinkage. MAG-R and 92/200 also showed effective drying shrinkage reduction at 90% RH. The restrained expansion of MAG-R and 92/200 during an early age was found to significantly improve the cracking resistance of oil well cement. The free expansion of 92/200, with low reactivity, caused significant strength reduction, but under restrained conditions the effect was mitigated as its compressive strength was enhanced by confined expansion. The addition of MAG-R increased compressive strength under both free and restrained conditions. Two groups of sodium silicate microcapsules, T1 with rigid polyurea shells and T2 with rubbery polyurea shells, were characterised in terms of their thermal stability, alkalinity resistance and survivability during cement mixing, and the results verified their suitability for use in oil well cement at the high temperature of 80 oC. The effects of the two types of microcapsules on the self-healing performance of oil well cement at 80 oC were monitored using a variety of techniques. Oil well cement itself showed very little healing capability when cured at 80 oC, but the addition of microcapsules significantly promoted its self-healing performance, showing reduced crack width and crack depth, enhanced tightness recovery against gas permeability and water sorptivity, as well as strength recovery. Microstructure analyses of the cracking surface further verified the successful release of the sodium silicate core and its reaction with the cement matrix to form C-S-H healing products. Both groups of microcapsules showed comparable self-healing efficiency. Their different shell properties mainly influenced the strength of oil well cement, with rigid shell microcapsules causing less strength reduction than rubbery shell microcapsules. The overall performance of oil well cement containing both reactive MgO and microcapsules were evaluated. The combined addition of MgO MAG-R and T1 microcapsules showed similar expansion performance and self-healing efficiency compared to their individual use. The use of MgO MAG-R compensated for the strength reduction caused by the addition of microcapsules, achieving an overall improvement in the cement strength.
2

Složení a fyzikálně-mechanické vlastnosti samozhutnitelných těžkých malt / The composition and physical-mechanical properties of self consolidating mortars

Čepčianska, Jana January 2020 (has links)
This Master thesis is focused on characterization of multicompound self-compacting heavy-weight mortars resistant against long lasting influence of ionizing radiation in the underground nuclear waste storage. It examines a specific combination of properties of heavy-weight concretes and self-compacting mortars while considering the ecological and energetic impact of their production, as well as the productibility of partial substitutions that do not have negative impact on material properties. The Experimental part provides a comprehensive overview of composition and properties of self-compacting heavy-weight mortars with varying percentages of cement-to-mortar ratio. Sample properties were evaluated based on mechanical test results, thermal analysis, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction.
3

Formula??o de pastas ciment?cias com adi??o de suspens?es de quitosana para cimenta??o de po?os de petr?leo

Nobrega, Andreza Kelly Costa 29 October 2009 (has links)
Made available in DSpace on 2014-12-17T14:07:03Z (GMT). No. of bitstreams: 1 AndrezaKC.pdf: 2477387 bytes, checksum: 5eafbea5e547e68eaf6513cad9b400ba (MD5) Previous issue date: 2009-10-29 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Primary cementing is one of the main operations in well drilling responsible for the mechanical stability and zonal isolation during the production of oil. However, the cement sheath is constantly under mechanical stresses and temperature variations caused by the recovery of heavy oil. In order to minimize fracture and wear of the cement sheath, new admixtures are developed to improve the properties of Portland cement slurries and avoid environmental contamination caused by leaking gas and oil. Polymers with the ability to form polymeric films are candidates to improve the properties of hardened cement slurries, especially their fracture energy. The present study aimed at evaluating the effect of the addition of a chitosan suspension on cement slurries in order to improve the properties of the cement and increase its performance on heavy oil recovery. Chitosan was dissolved in acetic ac id (0.25 M and 2 M) and added to the formulation of the slurries in different concentrations. SEM analyses confirmed the formation of polymeric films in the cementitious matrix. Strength tests showed higher fracture energy compared to slurries without the addition of chitosan. The formation of the polymeric films also reduced the permeability of the slurry. Therefore, chitosan suspensions can be potentially used as cementing admixtures for heavy oil well applications / A cimenta??o prim?ria ? uma das principais opera??es na perfura??o do po?o de petr?leo. A fixa??o do revestimento e o isolamento zonal garantir? seguran?a e diminui??o dos custos na fase de produ??o de ?leo. No entanto, ? constante a ocorr?ncia de problemas na bainha ciment?cia devido a esfor?os mec?nicos e a varia??o de temperatura, causada pela recupera??o de ?leos pesados. Visando minimizar as fraturas e desgaste da bainha, novas adi??es est?o sendo desenvolvidas para melhorar as propriedades do cimento Portland e evitar a contamina??o ambiental decorrente de vazamento de g?s e ?leo pelo anular. Pol?meros com a capacidade de formar filmes polim?ricos s?o op??es de adi??es, pois a poss?vel forma??o da teia polim?rica na matriz ciment?cia melhora as propriedades e a energia de fratura da pasta. O presente trabalho, tem como objetivo adicionar ?s pastas ciment?cias suspens?o de quitosana para melhorar as propriedades da pasta ciment?cia e aumentar seu desempenho em opera??es de recupera??o de ?leo pesado. A quitosana foi dilu?da em ?cido ac?tico (0,25 M e 2 M) e adicionada na formula??o das pastas em diferentes concentra??es. A an?lise do MEV confirmou a forma??o de redes polim?ricas na matriz ciment?cia e os testes deresist?ncia mec?nica comprovaram uma energia de fratura elevada em rela??o ? pasta sem adi??o do pol?mero. A forma??o da teia polim?rica tamb?m reduziu a permeabilidade da pasta. Com isso, a suspens?o de quitosana torna-se uma solu??o polim?rica com potencial para ser aplicado em cimenta??o de po?os de petr?leo
4

influ?ncia da adi??o de diferentes sais em pastas de cimento portland para cimenta??o de po?os de petr?leo

Costa, Bruno Leonardo de Sena 28 September 2013 (has links)
Made available in DSpace on 2014-12-17T14:07:06Z (GMT). No. of bitstreams: 1 BrunoLSC_DISSERT.pdf: 3848053 bytes, checksum: 28828821b0f45645fb6dc741dc2505bf (MD5) Previous issue date: 2013-09-28 / One of the great challenges at present time related with the materials area concerns of products and processes for use in petroleum industry, more precisely related to the Pre-salt area. Progresses were reached in the last years allowing the drilling of the salt layer, with the time reduction for drilling and larger success at the end. For the oil wells companies the preponderant factor is the technology, however, in spite of the progress, a series of challenges is still susceptible to solutions and one of them refers to the slurries preparation for cementing in those areas. Inside of this context, this study had for objective to analyze the influence of the salts NaCl, KCl, CaSO4 and MgSO4 in strength and chemical structure of the hydrated products. As methodology, they were prepared and analyzed cement slurries with varied concentrations of these salts that are commonly found in the saline formations. The salts concentrations used in formulations of the slurries were of 5%, 15% and 30%. The slurries were formulated with specific weight of 15,8 lb / gal and the cement used was Class G. Strength tests were accomplished in samples cured by 24 hours and 28 days. Also were realized crystallographic characterization (XRD) and morphologic (SEM). In agreement with the presented results, it is observed that the largest resistance values are attributed to the slurries with concentration of 15%. There was reduction of the strength values of the slurries formulated with concentration of 30%. Through the characterization microstructural it was possible to note the salts influence in the main cement hydrated products / Um dos grandes desafios da atualidade relacionado com a ?rea de materiais diz respeito ? produ??o de produtos e processos para uso na ind?stria do petr?leo, mais precisamente relacionado ? ?rea do Pr?-sal. Avan?os foram alcan?ados nos ?ltimos anos permitindo a perfura??o da camada de sal, com a redu??o do tempo para perfura??o dos po?os e maior ?xito ao final da opera??o. Apesar dos avan?os, uma s?rie de desafios ainda ? pass?vel de solu??es e um deles refere-se ? prepara??o de pastas para a cimenta??o de po?os nessas zonas com camadas evapor?ticas. Dentro deste contexto, este estudo teve por objetivo analisar a influ?ncia dos sais NaCl, KCl, CaSO4 e MgSO4 no comportamento mec?nico e estrutura qu?mica dos produtos hidratados. Como metodologia, foram preparadas e analisadas pastas de cimento com concentra??es variadas destes sais que s?o comumente encontrados nas forma??es salinas do reservat?rio do Pr?-sal. As concentra??es dos sais empregadas nas formula??es das pastas foram de 5%, 15% e 30%. As pastas foram formuladas com peso espec?fico de 15,8 lb/gal e o cimento utilizado na prepara??o das pastas foi o do tipo Portland Classe G. Foram realizados ensaios de resist?ncia ? compress?o em corpos de prova curados por 24 horas e 28 dias. Tamb?m foram realizados ensaios de caracteriza??o cristalogr?fica (DRX) e morfol?gica (MEV). De acordo com os resultados apresentados, observa-se que os maiores valores de resist?ncia s?o atribu?dos ?s pastas com concentra??o de 15 % para todos os sais. Houve, tamb?m, redu??o dos valores de resist?ncia das pastas formuladas com concentra??o de 30 % para todos os sais. Atrav?s das an?lises de caracteriza??o micro estrutural foi poss?vel observar a influ?ncia dos sais nos principais produtos hidratados do cimento Portland
5

A multi-technique investigation of the effect of hydration temperature on the microstructure and mechanical properties of cement paste / Etude multi-technique de l'effet de la température d'hydratation de ciment sur la microstructure et les propriétés mécaniques de la pâte de ciment

Bahafid, Sara 27 November 2017 (has links)
Le processus de l’hydratation de ciment et la microstructure qui en résulte, dépendent de la formulation de la pâte et des conditions d’hydratation. Parmi différents facteurs, la température d’hydratation a un effet important sur la microstructure et les propriétés physiques et mécaniques des matériaux cimentaires. Ceci est particulièrement important pour l’étude du comportement des ciments pétroliers. En effet, dans un puits pétrolier, une gaine de ciment est coulée entre la roche réservoir et le cuvelage en acier pour assurer entre autre la stabilité et l’étanchéité du puits. En raison du gradient géothermique (environ 25°C par km), la gaine de ciment le long d'un puits est exposée à une température d'hydratation qui augmente avec la profondeur menant à une augmentation de perméabilité et une baisse de propriétés mécaniques le long du puits. L'objectif cette thèse est d'étudier l'effet de la température d'hydratation dans la gamme de 7°C à 90°C sur la microstructure d'une pâte de ciment (classe G) et d'établir le lien entre les modifications microstructurales et les propriétés élastiques du matériau. La caractérisation de la microstructure est faite en considérant une combinaison de plusieurs méthodes expérimentales, à savoir, la diffraction des rayons X & l’analyse Rietveld, l'analyse thermogravimétrique, porosimétrie par l'intrusion de mercure, l'évaluation de la porosité par lyophilisation ou par séchage à 11% HR, essais de sorption au Nitrogène et à la vapeur d'eau et finalement, la résonance magnétique nucléaire 1H. L’assemblage de masse des différentes phases de la microstructure a été évalué montrant une légère dépendance à la température d’hydratation. L’étude de la porosité a montré une augmentation de la porosité capillaire et une légère diminution de la porosité totale à 28 jours d’hydratation, ce qui résulte en une diminution de la porosité du gel de C-S-H en augmentant la température d'hydratation. Une méthode d'analyse a été proposée pour évaluer la densité saturée de C-S-H et sa composition chimique en termes des rapports molaires C/S et H/S pour un C-S-H sec et saturé. Les résultats montrent que la densité de C-S-H augmente avec la température d'hydratation expliquant ainsi l'augmentation observée de la porosité capillaire à températures élevées. Les rapports C/S et H/S diminuent avec l’augmentation de la température d’hydratation. La caractérisation de la microstructure a permis d’alimenter un modèle micromécanique destiné à prédire les propriétés élastiques de la pâte de ciment pour différentes températures d’hydratation. Des modèles d’homogénéisation auto-cohérents à deux et trois échelles ont montré que l’augmentation de la porosité capillaire ne suffit pas pour expliquer la baisse des propriétés mécaniques avec la température. En effet, l’augmentation de la densité de C-S-H avec la température d’hydratation annule l’effet de l’augmentation de la porosité capillaire sur les propriétés élastiques. La réduction des propriétés mécaniques pourrait être expliquée en considérant une distribution de porosité au sein de C-S-H sous forme de C-S-H basse densité LD et haute densité HD telle que proposée par Tennis et Jennings (2000). Cette possibilité est investiguée par une combinaison de techniques de porosimétrie : porosimétrie par l'intrusion de mercure, adsorption d'azote et désorption de vapeur d'eau et par un calcul inverse à l’aide de la modélisation micromécanique. Les résultats montrent que la porosité intrinsèque LD augmente légèrement tandis que la porosité intrinsèque HD diminue de manière significative avec l'augmentation de la température d'hydratation. La diminution des propriétés élastiques des matériaux cimentaires avec l’augmentation de la température d'hydratation s’avère être due à l’action combinée de l'augmentation de la porosité capillaire et des changements de porosités intrinsèques à l’intérieure de C-S-H / The cement hydration process and the resulting microstructure are highly dependent on the cement formulation and the hydration conditions. Particularly, the hydration temperature has a significant influence on the cement paste microstructure and its mechanical properties. This is for instance important for understanding the behaviour and properties of oil-well cements which are used to form a cement sheath between the casing and the surrounding formation for stability and sealing purposes. This cement sheath is hydrated under a progressively increasing temperature along the depth of a well due to the geothermal gradient (about 25°C/km). It results generally in a decrease of the mechanical properties and an increase of permeability along the well. The aim of the present thesis is to investigate the effect of the hydration temperature in the range of 7°C to 90°C on the microstructure of a class G cement paste and to establish the link between these temperature dependent microstructure and the elastic properties of the material. The microstructure characterization is done by combining various experimental methods, including X-Ray diffraction associated with the Rietveld analysis, thermogravimetric analysis, mercury intrusion porosimetry, porosity evaluation by freeze-drying or drying at 11% RH, Nitrogen and water vapour sorption experiments and finally 1H nuclear magnetic resonance. The mass assemblage of microstructure phases at different curing temperatures has been evaluated and showed a slight dependence on the hydration temperature. The porosity evaluations show an increase of the capillary porosity and a slight decrease of the total porosity at 28 days, resulting in a decrease of the gel porosity by increasing the hydration temperature. An analysis method has been proposed to evaluate the C-S-H saturated density and chemical composition in terms of H/S and C/S molar ratios. The C-S-H bulk density is increasing with increasing hydration temperature which explains the observed increase of the capillary porosity for higher curing temperatures. The C/S ratio and H/S ratio for both solid and saturated C-S-H are decreasing with increasing curing temperature. The provided quantitative characterization of cement paste microstructure is used in a micromechanical modelling for evaluation of the elastic properties at various hydration temperatures. Two and three-scale self-consistent micromechanical models have shown that the increase of capillary porosity with increasing hydration temperature cannot fully explain the drop of elastic properties. This is mainly due to the increased elastic properties of C-S-H being denser at higher temperature that cancel the effect of increasing capillary porosity on the overall elastic properties. Another way to fully account for the decrease of the mechanical properties of cement paste is to consider the porosity distribution inside the C-S-H in the form of two distinguished C-S-H types, High Density (HD) and Low Density (LD) C-S-H, as proposed by Tennis and Jennings (2000). This possibility is probed by a combination of various porosity evaluations: Mercury intrusion porosimetry, nitrogen adsorption and water vapour desorption and by a back calculation using micromechanical modelling. The results show that the LD intrinsic porosity is slightly increasing while the HD intrinsic porosity decreases significantly with increasing hydration temperature. The decrease of the elastic properties of cement based materials with increasing hydration temperature is therefore a combined action of the increase of capillary porosity and the changes of intrinsic C-S-H porosities
6

Modélisation expérimentale du stockage géologique du CO2 : étude particulière des interfaces entre ciment de puits, roche reservoir et roche couverture / Experimental simulation of the geological storage of CO2 : particular study of the interfaces between well cement, reservoir rock and caprock

Jobard, Emmanuel 22 February 2013 (has links)
Dans le cadre du stockage géologique de gaz acides, il est impératif de garantir l'intégrité des matériaux sollicités afin d'assurer un confinement pérenne du fluide injecté. Le but de ce travail de thèse est d'étudier, par le biais de modélisations expérimentales, les phénomènes pouvant être responsables de la déstabilisation du système et qui peuvent conduire à des fuites du gaz stocké. Le premier modèle expérimental, appelé COTAGES a permis d'étudier les effets de la déstabilisation thermique provoquée par l'injection d'un gaz à température ambiante dans un réservoir chaud. Ce dispositif a permis de mettre en évidence un transfert de matière important depuis la zone froide (30°C) vers la zone chaude (100°C) conduisant à des modifications des propriétés pétrophysiques. Ces résultats soulignent l'importance de la température d'injection sur la conservation des propriétés d'injectivité du système. Le second modèle, appelé "Sandwich" a permis d'étudier le comportement de l?interface entre la roche couverture (argilite COX) et le ciment de puits. Les expériences batch du modèle Sandwich en présence de CO2 ont permis de mettre en évidence une fracturation de l'interface provoquée par la carbonatation précoce du ciment. Ces résultats soulignent l'importance de l'état initial de la roche couverture dans la séquestration du fluide injecté. Le troisième modèle expérimental est le modèle MIRAGES. Ce dispositif innovant permet d'injecter en continu un flux de CO2 dans un échantillon. Les résultats ont mis en évidence un colmatage partiel de la porosité inter-oolithe à proximité du puits d'injection, ainsi qu'une carbonatation du ciment sous la forme d'un assemblage calcite/aragonite / In the framework of the CO2 storage, it is crucial to ensure the integrity of the solicited materials in order to guarantee the permanent confinement of the sequestrated fluids. Using experimental simulation the purpose of this work is to study the mechanisms which could be responsible for the system destabilization and could lead CO2 leakage from the injection well. The first experimental model, called COTAGES allows studying the effects of the thermal destabilisation caused by the injection of a fluid at 25°C in a hotter reservoir (submitted to the geothermal gradient). This device allows demonstrating an important matter transfer from the cold area (30°C) toward the hot area (100°C). These results highlight the importance of the injection temperature on the injectivity properties and on the possible petrophysical evolutions of the near well. The second model, called ?Sandwich?, allow studying the behaviour of the interface between caprock (COX argillite) and well cement. Indeed, interfaces between the different rock and the well materials represent a weakness area (differential reactivity, fracturing?). Batch experiments carried out with this device in presence of CO2 show the fracturing of the interface caused by the early carbonation of the cement. The third experimental model, called MIRAGES is an innovative device which allows injecting continuously CO2 in a core sample. Samples made of Lavoux limestone and well cement reproduce the injection well at 1/20 scale. Results show a partial filling of the inter-oolithic porosity close to the injection well, and also the carbonation of the cement according to an assemblage of calcite/aragonite
7

[en] CHEMO-PHYSICO-MECHANICAL BEHAVIOR OF CLASS G OIL WELL CEMENT PASTES / [pt] COMPORTAMENTO QUÍMICO-FÍSICO-MECÂNICO DE PASTAS DE CIMENTO CLASSE G PARA POÇO DE PETRÓLEO

VICTOR NOGUEIRA LIMA 23 January 2023 (has links)
[pt] O presente estudo busca definir uma relação de mistura estável utilizando aditivos poliméricos à base de álcool polivinílico (PVOH) para controlar a perda de filtrado, antiespumante e dispersante, caracterizando a influência de cada adição na cinética de hidratação, propriedades mecânicas, físicas e reologia da mistura. Além disso, foi caracterizado o comportamento das pastas de cimento em condições de cura que simulam a situação do poço até 6100 m de profundidade, seguindo as recomendações da API, e o comportamento do material nos estados in situ, utilizando pressões confinantes para realizar os ensaios de compressão. Por fim, propôs-se a inclusão de microfibras de álcool polivinílico (PVA) para melhorar o desempenho mecânico das pastas cimentícias, avaliando diferentes tipos de carregamento e definindo os impactos da adição de fibras na viscosidade e tixotropia das misturas. Verificou-se que o uso de PVOH como aditivo de perda de filtrado não influencia na cinética de hidratação para concentrações de até 0,4% em peso de cimento, mas à medida que a quantidade de PVOH é aumentada na mistura, o processo de hidratação da pasta de cimento pode ser modificado por causa do mecanismo de absorção do PVOH. Além disso, novas fases de produtos de hidratação aparecem com o aumento da temperatura e pressão de cura: dellaite, hydroxyellestadite e alpha-C2SH. A última fase (alpha-C2SH) está relacionada à perda de capacidade de resistência das amostras curadas a 149°C, simulando o caso do poço de petróleo de 6100 m de profundidade. Para os ensaios triaxiais, a pressão de confinamento conferiu às amostras um comportamento diferente do caso uniaxial, implicando em uma considerável melhora da plasticidade no comportamento tensão-deformação. Embora se observe algum reforço por atrito devido a tensões de cisalhamento no plano das fissuras, o efeito mais importante do confinamento é suportar a deformação dúctil, mesmo para o caso da pasta de cimento reforçada com fibra de PVA. Finalmente, o estudo mostrou que as fibras de PVA conferem um leve aumento da viscosidade da pasta de cimento, uma fase plástica prolongada aparentemente sem perda de capacidade de carga em testes triaxiais e uma capacidade aprimorada de absorver energia ao avaliar cargas de tração e cisalhamento. / [en] The present study seeks to define a stable mixing ratio using powder Polyvinyl Alcohol (PVOH) based polymeric additives to control the loss of filtrate, defoamer, and dispersant, characterizing the influence of each addition on hydration kinetics, mechanical and physical properties, and rheology of the mix. The behavior of cement pastes under curing conditions that simulate the wellbore situation up to 6100 m depth was also evaluated, following API recommendations. Moreover, the behavior of the material under in situ states, using confining pressures to perform the compression tests, was characterized. Finally, the inclusion of Polyvinyl Alcohol (PVA) microfibers is proposed to improve the mechanical performance of cement pastes, evaluating different types of loading and defining the impacts of the fiber addition on the viscosity and thixotropy of the mixtures. It was found that the use of PVOH as a fluid loss additive does not influence hydration kinetics for concentrations up to 0.4% by weight of cement, but as the amount of PVOH is increased in the mixture, the hydration process of the cement paste may be modified because of the PVOH absorptive mechanism. Moreover, new hydration products phases appear with increasing curing temperature and pressure: dellaite, hydroxyellestadite, and alpha-C2SH. The last phase (alpha-C2SH) is related to the loss of strength capacity of the samples cured at 149°C, simulating a 6100 m depth wellbore. For the triaxial tests, the confining pressure gave the samples a behavior markedly different from the uniaxial case, implying a considerable improvement in the plasticity of the stress-strain behavior. Although some frictional reinforcement is observed due to shear stresses in the cracks surface, the most important effect of confinement is to withstand ductile deformation, even in the case of PVA fiber-reinforced cement paste. Finally, the study has shown that PVA fibers impart a slight viscosifying effect on the cement slurry, a prolonged plastic phase with apparently no loss of load-carrying capacity in triaxial tests, and an improved ability to absorb energy when evaluating tensile and shear loads.

Page generated in 0.0854 seconds