• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 33
  • 10
  • 10
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 167
  • 167
  • 64
  • 43
  • 42
  • 29
  • 29
  • 26
  • 25
  • 18
  • 18
  • 17
  • 16
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Angular Analysis of a Wide-Band Energy Harvester based on Mutually Perpendicular Vibrating Piezoelectric Beams

Mirzaabedini, Sohrab 12 1900 (has links)
The recent advancements in electronics and the advents of small scaled instruments has increased the attachment of life and functionality of devices to electrical power sources but at the same time granted the engineers and companies the ability to use smaller sources of power and batteries. Therefore, many scientists have tried to come up with new solutions for a power alternatives. Piezoelectric is a promising material which can readily produce continuous electric power from mechanical inputs. However, their power output is dependent upon several factors such as, system natural frequency, their position in the system, the direction of vibration and many other internal and external factors. In this research the working bandwidth of the system is increased through utilizing of two different piezoelectric beam in different directions. The dependency of output power with respect to rotation angle and also the frequency shift due to the rotation angle is studied.
82

Estimation of Respiration Rate Using Ultra Wide-Band Detection and Ranging Employing a Novel Technique for Cross Correlation Using Discrete Hermite Functions

Subramanian, Lalit January 2008 (has links)
No description available.
83

[pt] CARACTERIZAÇÃO DO CANAL MÓVEL EM FAIXA LARGA / [en] WIDE BAND MOBILE CHANNEL CARACTERIZATION

EDUARDO JAVIER ARANCIBIA VASQUEZ 12 April 2006 (has links)
[pt] Com o advento da tecnologia digital nas comunicações móveis, passa a ser de grande importância a caracterização em faixa larga do ambiente. O canal rádio móvel é descrito como um sistema linear variante no tempo e através de técnicas apropriadas determina-se a sua função de transferência. As duas técnicas de sondagem mais conhecidas são estudadas e implementadas para medir a resposta impulsiva em algumas regioões da cidade do Rio de Janeiro. Esta cidade apresenta uma grande diversidade de características urbanas, sendo, portanto, um excelente ambiente experimental para se realizar este tipo de medidas. Uma série de experimentos são realizados em três diferentes regiões da cidade do Rio de Janeiro. Os resultados destes experimentos inéditos são apresentados e comparados. Desta comparação, importantes informações sobre a caracterização em faixa larga desta região são obtidas e o desempenho das técnicas de sondagem usadas são observados. Finalmente, algumas sugestões para a continuação desta linha de trabalho são apresentadas. / [en] The wide band channel characterization has received, in last years, a great deal of attention since the deployment of mobile cellular radio systems using digital tecnology. The mobile radio channel is described as a time variant linear system and its tranfer function can be estimated using appropriated sounding tecniques. Two well-known sounding tecniques are studied an implemented to determine the impulsive response of some regions of rio de Janeiro city. This city a huge diversity of urban characteristics, so it an excellent environment to carry out this Kind of investigation. An extensive campaing of experiments was carried out in three different regions in the city of Rio de Janeiro. These experimental results are presented and compared. From this comparison, a series of important wide band characterization information are obtained and the performances of each one of the used tecniques are observed. Finaly, some suggestions for the continuation of this line of work are presented.
84

Ultra-wideband Orthogonal Frequency Coded Saw Correlators

Gallagher, Daniel 01 January 2007 (has links)
Ultra-wideband (UWB) communication new technology with ability to share the FCC allocated frequency spectrum, large channel capacity and data rate, simple transceiver architecture and high performance in noisy environments. Such communication advantages have paved the way for emerging wireless technologies such as wireless high definition video streaming, wireless sensor networks and more. This thesis examines orthogonal frequency coded surface acoustic wave (SAW) correlators for use in advanced UWB communication systems. Orthogonal frequency coding (OFC) and pseudo-noise (PN) coding provides a means for UWB spreading of data. The use of OFC spectrally spreads a PN sequence beyond that of CDMA because of the increased bandwidth; allowing for improved correlation gain. The transceiver approach is still very similar to that of the CDMA approach but provides greater code diversity. Use of SAW correlators eliminates many of the costly components that are needed in the IF block in the transmitter and receiver, and reduces much of the signal processing requirements. The OFC SAW correlator device consists of a dispersive OFC transducer and a wideband output transducer. The dispersive filter was designed using seven contiguous chip frequencies within the transducer. Each chip is weighted in the transducer to account for the varying conductance of the chips and to compensate for the output transducer apodization. Experimental correlator results of an OFC SAW correlation filter are presented. The dispersive filter is designed using seven contiguous chip frequencies within the transducer. SAW correlators with fractional bandwidth of approximately 29% were fabricated on lithium niobate (LiNbO3) having a center frequency of 250 MHz and the filter has a processing gain of 49. A coupling of modes (COM) model is used to predict the experimental SAW filter response. Discussion of the filter design, analysis and measurements are presented. Results are shown for operation in a matched filter correlator for use in an UWB communication system and compared to predictions.
85

Microwave and RF system for Industrial and Biomedical Applications

Manekiya, Mohammedhusen Hanifbhai 27 May 2021 (has links)
Modern smartphone technology has created a myriad of opportunities in the field of RF and Microwave. Specifically, Chipless RFID sensor, compact microwave filter, antenna based on a microstrip structure, and many more. In this thesis, innovative ideas for the industrial and biomedical device has been explored. The work presents the reconfigurable filter design, Switch-beam antenna, Microwave interferometer, X-band Rotman Lens antenna, Ultra-wideband antenna based on SIW resonator, L-band Stepped Frequency Continuous Wave antenna, development of a wireless sensor system for environmental monitoring, Indoor Air Quality monitoring, and Wildfire Monitoring based on the modulated scattering technique (MST). The MST sensor probes are based on the scattering properties of small passive antennas and radiate part of the impinging electromagnetic field generated by an interrogating antenna, which also acquires the backscattered signal as information. The MST probes are able to deliver data without a radio frequency front end. They use a simple circuit that alternatively terminates the antenna probe on suitable loads to generate a low modulation signal on the backscattered electromagnetic wave. The antenna presented in this work has been designed in ADS Software by Keysight Technologies. The designed antenna has been assessed numerically and experimentally. The experimental measurement data demonstrate the effectiveness of the individual system. Simultaneously, the MST sensor system has been proposed to obtain the best performance in communication range, load efficiency, and power harvesting. The MST sensor has been fabricated and assessed in practical scenarios. The proposed prototype, able to provide a communication range of about 15 m, serves as a proof-of-concept. The acquired measurements of MST demonstrate the accuracy of the data without radio frequency front end or bulky wired connection with the same efficiency of standard wireless sensors such as radio frequency identifier (RFID) or wireless sensor networks (WSN).
86

A GAN BASED DUAL ACTIVE BRIDGE CONVERTER TO INTERFACE ENERGY STORAGE SYSTEMS WITH PHOTOVOLTAIC PANELS

Hassan , Hassan Athab 04 December 2017 (has links)
No description available.
87

A DIRECTION FINDING SYSTEM USING LOG PERIODIC DIPOLE ANTENNAS IN A SPARSELY SAMPLED LINEAR ARRAY

Weldon, Jonathan Andrew 08 July 2010 (has links)
No description available.
88

Compressed Sensing for Electronic Radio Frequency Receiver:Detection, Sensitivity, and Implementation

Lin, Ethan 02 May 2016 (has links)
No description available.
89

Balanced dual-segment cylindrical dielectric resonator antennas for ultra-wideband applications

Majeed, Asmaa H., Abdullah, Abdulkareem S., Sayidmarie, Khalil H., Abd-Alhameed, Raed, Elmegri, Fauzi, Noras, James M. 22 October 2015 (has links)
Yes / In this paper, balanced dual segment cylindrical dielectric antennas (CDRA) with ultra wide-band operation are reported. First a T-shaped slot and L-shaped microstrip feeding line are suggested to furnish a balanced coupling mechanism for feeding two DRAs. Performance of the proposed antenna was analyzed and optimized against the target frequency band. The proposed antenna was then modified by adding a C-shaped strip to increase the gain. The performances of both balanced antennas were characterized and optimized in terms of antenna reflection coefficient, radiation pattern, and gain. The antennas cover the frequency range from 6.4 GHz to 11.736 GHz, which is 58.7% bandwidth. A maximum gain of 2.66 dB was achieved at a frequency of 7 GHz with the first antenna, with a further 2.25 dB increase in maximum gain attained by adding the C-shaped strip. For validation, prototypes of the two antennas were fabricated and tested. The predicted and measured results showed reasonable agreement and the results confirmed good impedance bandwidth characteristics for ultra-wideband operation from both proposed balanced antennas.
90

PCB-Based Heterogeneous Integration of LLC Converters

Gadelrab, Rimon Guirguis Said 22 February 2023 (has links)
Rapid expansion of the information technology (IT) sector, market size and consumer interest for off-line power supply continue to rise, particularly for computers, flat-panel TVs, servers, telecom, and datacenter applications. Normal components of an off-line power supply include an electromagnetic interference (EMI) filter, a power factor correction (PFC) circuit, and an isolated DC-DC converter. For off-line power supply, an isolated DC-DC converter offers isolation and output voltage adjustment. For an off-line power supply, it takes up significantly more room than the rest; thus, an isolated DC-DC converter is essential for enhancing the overall performance and lowering the total cost of an off-line power supply. In contrast, data center server power supplies are the most performance-driven, energy-efficient, and cost-aware of any industrial application power supply. The full extent of data centers' energy consumption is coming into focus. By 2030, it is anticipated that data centers will require around 30,000 TWh, or 7.6% of world power usage. In addition, with the rise of cloud computing and big data, the energy consumption of data centers is anticipated to continue rising rapidly in the near future. In data centers, isolated DC-DC converters are expected to supply even higher power levels without expanding their size and with much greater efficiency than the present standard, which makes their design even more challenging. LLC resonant converters are frequently utilized as DC-DC converters in off-line power supply and data centers because of their high efficiency and hold-up capabilities. LLC converters may reduce electromagnetic interference because the primary switches and secondary synchronous rectifiers (SRs) both feature zero-voltage-switching (ZVS) and zero-current-switching (ZCS) for the SRs. Almost every state-of-the-art off-line power supply uses LLC converters in their DC-DC transformations. However, LLC converters face three important challenges. First, the excessive core loss caused by the uneven flux distribution in planar magnetics, owing to the huge size and high-frequency operation of the core. These factors led to the observation of dimensional resonance within the core and an excessive amount of eddy current circulating within the core, which resulted in the generation of high eddy loss within the ferrite material. This was normally assumed to be negligible for small core sizes and lower frequencies. This dissertation proposes methods to help redistribute the flux in the core, particularly in the plates where the majority of core losses are concentrated, and to provide more paths for the flux to flow so that the plates' thickness can effectively be reduced by half and core losses, particularly eddy loss, are reduced significantly. Second, the majority of power supplies in the IT sector are needed to deliver high-current output, but the transformer is cumbersome and difficult to build because of its high conduction losses. In addition, establishing a modular solution that can be scaled up to greater power levels while attaining a superior performance relative to best practices is quite difficult. By increasing the switching frequency to several hundred kilohertz using wide-band-gap (WBG) transistors, printed circuit board (PCB) windings may include magnetics. This dissertation offers a modular and scalable matrix transformer structure and its design technique, allowing any number of elemental transformers to be integrated into a single magnetic core with significantly reduced winding loss and core loss. It has been shown that the ideal power limitations per transformer for PCB-based magnetics beat the typical litz wire design in all design areas, in addition to the unique advantages of PCB-magnetics, such as their low profile, high density, simplicity, and automated construction. Alternatively, shielding layers may be automatically put into the PCB windings between the main and secondary windings during the production process to reduce CM noise. A method of shielding is presented to reduce CM noise. The suggested transformer design and shielding method are used in the construction of a 3 kW 400V/48 V LLC converter, with a maximum efficiency of 99.06% and power density of 530W/in3. Thirdly, LLC converters with a matrix transformer encounter a hurdle for extending greater power, including the number of transformers needed and the magnetic size. In addition to the necessity of resonant inductors, which increase the complexity and size of the magnetic structure, there is a need for a resonant inductor. By interconnecting the three-phases in a certain manner, three-phase interleaved LLC converters may lower the circulating energy, but they have large and numerous magnetic components. In this dissertation, a new topology for three-phase LLC resonant converters is proposed. Three-phase systems have the advantage of flux cancellation, which may be used to further simplify the magnetic structure and decrease core loss. In addition, a study of the various three-phase topologies is offered, and a criterion for selecting the best suitable topology is shown. Compared to the single-phase LLC, the suggested topology has less winding loss and core loss. In addition, three-phase transformers have a lower volt-second rating, and smaller core sizes may be used to mitigate the impact of eddy loss in the ferrite material. In contrast, three-phase systems offer superior EMI performance, which is shown in the loss and size of the EMI filter, and much less output voltage ripple, which is reflected in the size of the output filter. Finally, several methods of integrating resonant inductors into transformer magnetics are presented in order to accomplish a simple, compact, and cost-effective magnetic architecture. By increasing the switching frequency to 500 kHz, all six transformers and six inductors may be achieved using four-layer PCB winding. To decrease CM noise, additional 2-layer shielding may be implemented. A 500 kHz, 6-8 kW, 400V/48V, three-phase LLC converter with the suggested magnetic structure achieves 99.1% maximum efficiency and a power density of 1000 W/in3. This dissertation addresses the issues of analysis, magnetic design, expansion to higher power levels, and electromagnetic interference (EMI) in high-frequency DC/DC converters used in off-line power supply and data centers. WBG devices may be effectively used to enable high-frequency DC/DC converters with a hundred kilohertz switching frequency to achieve high efficiency, high power density, simple yet high-performance, and automated manufacture. Costs will be minimized, and performance will be considerably enhanced. / Doctor of Philosophy / The IT industry, market size, and customer interest in off-line power supply continue to grow quickly, especially for computers, flat-panel TVs, servers, telecom, and datacenter applications. Off-line power supplies usually have a DC-DC converter, an EMI filter, and a PFC circuit. A DC-DC converter is needed for an off-line power supply. An isolated DC-DC converter makes an off-line power supply work better and cost less, even though it takes up more space than the rest. But power supplies for data center servers are the most performance-driven, energy-efficient, and cost-conscious industrial applications. It's becoming clear how much energy data centers use. By 2030, data centers will use 7.6% of the world's power, or 30,000 TWh. With the rise of cloud computing and big data, energy use in data centers is likely to go up by a lot. In data centers, isolated DC-DC converters are expected to have much more power without getting bigger and to be much more efficient than the current standard. This makes their design even harder. LLC resonant converters are often used as DC-DC converters in data centers and off-line power supplies because they are very efficient and easy to control. LLC converters may have less electromagnetic interference because both the primary switches and the secondary synchronous rectifiers (SRs) have zero-voltage-switching (ZVS) and zero-current-switching (ZCS). Almost every modern off-line power supply uses LLC converters for DC-DC stage. LLC converters have to deal with three big problems. Due to the large size of the core and the high frequency of operation, the uneven distribution of flux in planar magnetics causes too much core loss. This dissertation suggests ways to redistribute flux in the core, especially in the plates where most core losses are concentrated and provide more flux paths to reduce plate thickness by half and core losses, especially eddy loss. Second, most IT power supplies need to put out a lot of current, but transformers are bulky and hard to build because they lose a lot of current. It is hard to make a modular solution that can scale up to higher levels of power and perform better than best practices. With wide-band-gap (WBG) transistors, the switching frequency can be raised to several hundred kilohertz so that magnetics can be added to PCB windings. This dissertation describes a modular and scalable matrix transformer structure and design method that lets any number of elemental transformers be put into a single magnetic core with much less winding loss and core loss. PCB-based magnetics have a low profile, a high density, are easy to build, and can be built automatically. Their ideal power limits per transformer beat the typical litz wire design in every way. Shielding layers can be added automatically between the main and secondary PCB windings to cut down on CM noise. CM noise is lessened by shielding. The suggested transformer design and shielding method are used to build a 3 kW 400V/48 V LLC converter with a maximum efficiency of 99.06% and a power density of 530W/in3. Third, LLC converters with matrix transformers can't get more power without more transformers and a bigger magnetic size. Resonant inductors, which add to the size and complexity of a magnetic structure, are also needed. By connecting the three phases, three-phase interleaved LLC converters use less energy, but they have a lot of magnetic parts. In this paper, a three-phase LLC resonant converter topology is proposed. In three-phase systems, flux cancellation makes magnetic structures easier to understand and reduces core loss. There is also a study of three-phase topologies and a set of criteria for choosing one. Compared to the single-phase LLC, the topology cuts down on winding and core loss. Three-phase transformers have a lower volt-second rating, and ferrite material eddy loss can be reduced by making the core smaller. The size and loss of the EMI filter show that three-phase systems have less output voltage ripple and better EMI performance. Finally, several ways of putting resonant inductors into the magnetics of a transformer are shown to make a magnetic architecture that is simple, small, and cheap. At 500 kHz, all six transformers and all six inductors can be wound on a four-layer PCB. CM noise can be cut down with 2-layer shielding. With the suggested magnetic structure, a 500 kHz, 6-8 kW, 400V/48V, three-phase LLC converter can reach 99.1% maximum efficiency and 1000 W/in3. This dissertation presents analysis, magnetic design, expanding to higher power levels, and electromagnetic interference (EMI) in high-frequency DC/DC converters used in off-line power supplies and data centers. WBG devices can be used to make high-frequency DC/DC converters with a switching frequency of a few hundred kilohertz that are powerful, easy to use, and can be automated. Both cost and performance will get better.

Page generated in 0.0927 seconds